

ii

The Original Edition
Copy preparation: Valerie Poge
Page layout: Marina Smid
©Editions Le Pommier, 2016
All rights reserved
ISBN: 978-2-7465-1106-4
8, rue Ferou-75006 Paris
www.editions-lepommier.fr

The English Edition
Translated from French by: Niamh O’Brien / Sans Contresens
Edited by: Mathieu Hirtzig, Fondation La main à la pâte
Project Advisors: Dato’ Dr. Sharifah Maimunah Syed Zin and Academician Dato’ Ir. (Dr.) Lee
Yee Cheong
Project Coordinator: Mohd Azim Noor
Published by: International Science, Technology and Innovation Centre for South-South
Cooperation under the auspices of UNESCO (ISTIC)
©2018, International Science, Technology and Innovation Centre for South-South
Cooperation under the auspices of UNESCO (ISTIC)

Perpustakaan Negara Malaysia Cataloguing-in-Publication
Calmet, Claire 1,2,3…Code! : Teaching computer science at primary and middle
school / Claire Calmet, Mathieu Hirtzig and David Wilgenbus
ISBN 978-967-13199-2-5
1. Computer Science. 2.Government publications-Malaysia
I. Hirtzig, Mathieu II. Wilgenbus, David III. Title 004

iii

It is a real pleasure for me to write an introductory note for
the English version of the handbook “1, 2, 3… codez !”.
First because its amazing success in France demonstrates
the quality and the usefulness of its content that deserves a
broader international audience; therefore this translation is
an excellent idea that I do warmly support.

Second, from a more personal perspective, I had the
opportunity to put into practice a few of the activities
proposed in the handbook with my grand-daughters aged
6 and 10, and I have been extremely pleased to discover
how their interest was immediately captured and how
their progress was obvious thanks to the well-constructed
approach proposed by the authors. I should confess that,
inspired by the book, my Christmas gift to the two girls was
a pair of programmable tiny robots; and guess what? the
least passionate to play programming the robots was not
the grand-father!

Indeed, we are in a digital world and nobody will avoid this new dimension of everyday
life, especially the young people who will be more and more immersed in it in the future,
professionally and in many aspects of their activities.

Obviously, the school must take with an extreme seriousness the question of young children
getting into the science of computing and programming. There are several reasons for that,
both practical and ethical.
First it is essential that students have an early understanding and practice of what is actually
computer science, so that they can become active players in the world of tomorrow instead of
remaining only consumers of what is designed and built elsewhere, as stated by Gérard Berry
in his preface of the second volume of “1, 2, 3… codez !”.
Second, by becoming familiar with the way information can be manipulated and distorted, the
young people will be better equipped to deal with a flow of information where fake news and
intrusion into private life are more and more actual threats.

This is what motivated the Foundation La main à la pâte, which was created by the French
Academy of science to promote and improve science teaching through IBSE, when the project
“1, 2, 3… codez !” was launched. I am convinced that the goal was indeed reached.

Clearly, computing science does not mean to be just familiar with surfing the web and using
spreadsheets or word processing programmes. In most of the questions we ask, beginning with
the word “how?”, the answer is an algorithm based on a few well defined principles. That is
the reason why the concept of algorithm and programming is at the heart of “1, 2, 3… code!”.
Activities are proposed in both plugged and unplugged forms; though using just paper and
pencil, unplugged activities are not the less effective and captivating for children.

PREFACE

Daniel Rouan
Member of the Académie des
sciences
President of the Foundation La

main à la pâte

iv

The handbook, intended for the teachers, proposes two types of content: on one hand a series
of progressions for the classroom, with well-tested sequences and their attached hand-outs,
and on the other hand a historical, scientific and educational background with a number of
references and links, so that teachers can enlarge their vision of the question. This smart
combination probably explains the success of the book.

I finally would like to warmly thank ISTIC and especially its former President Dato' Lee Yee
Cheong, who initiated this translation of the handbook and mobilised the resources that were
needed to accomplish this work in good conditions. The result is to my opinion a superb product
that should be circulated worldwide, for the benefit of millions of children with, this is my deep
wish, no exclusion of any social or gender category.

May 2018

v

The publication of the English version of 1,2,3…Codez! is yet
another milestone for ISTIC in its efforts to enhance the capacity
of science educators particularly those teaching computer
science education in the English speaking developing countries.
This third publication by ISTIC on classroom resources in
science education which is translated into English from French
is again meant to be used by teachers in the classroom. The
publications of the two earlier books “Discoveries in Islamic
Countries” which focused on the contribution of science
discoveries to modern science and the second book “When
the Earth Rumbles” provide exciting activities and simulation
of scientific principles related to earth movements through
hands-on activities using IBSE as an approach.

Digital technology is increasingly being used in teaching and
learning. Online learning and use of computer software have

become a feature in many classrooms. The introduction of computer science in the school
curriculum is therefore imperative as we move into the digital world. While it is important for
students to be competent in the use of computers to enhance learning, it is equally important
to teach students on problem solving through logical and creative thinking. Hence the rationale
for including learning to write and read code which teaches logic and programming algorithms
which tells the computer the exact step to take in the teaching of computer science in schools.
This book precisely does that. As one goes through the book, one will realise that teaching
computer science covers the logical thinking and creativity through both the ‘unplugged’
activities which involve teaching computing concepts without computers by using Inquiry-
Based Science Education and ‘plugged’ activities which makes use of computers and robots.

As the world is fast moving into the digital age, developing countries cannot afford to be left
out of the benefits of this new revolution.

I would like to take this opportunity to thank the La main a la Pate Foundation for giving the
consent to translate this book into English and to supervise in the translation of the book.
Special thanks goes to Dr. David Wilgenbus, one of the authors who introduced the book and
the philosophy behind it. I also would like to thank our Honorary Chairman, Dato’ Ir. (Dr.) Lee
Yee Cheong for his persistence and perseverance in ensuring the translation on this book
takes off. I am grateful to the Ministry of Science, Technology and Innovation for the financial
assistance to the publication.

Finally it is ISTIC’s hope that the book will reach out to teachers in the teaching of coding,
programming and algorithm in computer science towards developing the future creators of
technology.

May 2018

FOREWORD

Dato’ Dr. Samsudin

Tugiman
Chairman
of ISTIC Governing Board

vi

Authors and acknowledgements
“1,2,3...Code!”, a teaching project designed by the La main à la pâte foundation, was produced
with the support of the French Institute for Research in Computer Science and Automation
(Inria) and the association France IOI.
The project was also financed by the French government’s Investissements d’Avenir program
— via the “Class’Code” project — Google, Microsoft and Mobsya. The authors and the La main

à la pâte foundationexpress their thanks.

Coordination

David Wilgenbus (La main à la pâte)

Design and writing

Claire Calmet (La main à la pâte)
Mathieu Hirtzig (La main à la pâte)

David Wilgenbus (La main à la pâte)

With the support of:

Gilles Dowek (Inria)
Mathias Hiron (France IOI)
Florent Masseglia (Inria)

Elena Pasquinelli (La main à la pâte)
Pierre-Yves Oudeyer (Inria)

Martin Quinson (Inria)
Didier Roy (Inria)

Illustrations

Gabrielle Zimmermann (La main à la pâte)
The authors would also like to thank the teachers across France who tested this project in their
classrooms, as well as the teacher trainers who assisted them. Their feedback was invaluable in
the drafting of this teaching manual. Sincere thanks to Laurence Bensaid, Manuel Binet, Jean-
Christophe Bizot, Cédric Blacha, Anne-Sophie Boullis , Olivier Cogis, Typhaine Collignon, Marik
Cosson, Christelle Crusberg, Jeanne Daufin, Nicolas Demarthe, Catherine Dicky, Murielle Ducroo,
Kévin Faix, Caroline Fayard, Marc Fouré, Olivier Gagnac, Vanessa Guionie, Anna Halatchev,
Anne-Marie Lebrun, Catherine Le Frapper, Martine Lizambert, Anne Marigiano, Jessica Mazoyer,
Anne-Hélène Montfort, Nathalie Pasquet, Pascale Priez, Fatima Rahmoun, Richart Terrat, Nicolas
Thiéry, Carole Vinel, Emmanuelle Wilgenbus and Gabrielle Zimmermann.

Lastly, the authors thank Sophie de Quatrebarbes and Thierry Viéville (Inria) for their much-
appreciated advice and support.

vii

Introduction...1

Scientific Background...4

A brief history of computer science...5
Algorithms, languages and programs...14
Computing objects: computers, robots, networks and more..22
How information is represented..30
Computer science and social challenges..37

Educational Background...39

Computer Science and Information and
Communications Technology (ICT) in Education..40
How should this teaching manual be used?..41
How to teach computer science?..42

Pedagogical module: class activities...53

Level 1 Activities..54

Overview...54
Sequence 1: Playing robot...57
Sequence 2: Playing with robots..81
Outcome lesson: What is robot?...96

Level 2 Activities...104

Overview..105
Sequence 1: The adventure...109
Sequence 2: Telling the adventure with Scratch Junior...137
Sequence 2b: Alternative with Scratch..164
Sequence 3: Robotics..182

Level 3 Activities...201

Overview..203
Sequence 1: Prepare the mission..206
Sequence 2: Simulate the mission in Scratch..229
Sequence 3: Sending News...295
Outcome lesson: What is computer science?...328

The 1, 2, 3 Code! Website..342

Project Partners...343

Contents

viii

1

Introduction

The Benefits of Teaching Young Children Computer

Science

All learning should enable children, adolescents (and adults!) to understand the world they live
in and prepare them to play an active role in it. Recent transformations in how we communicate,
our leisure activities, social interactions and production tools, for example, are intimately
linked to advances in computer technology, to the extent that today we talk about the “digital
world”. This new world bears many hopes for technological progress, job creation, but also
raises concerns, particularly in the field of ethics and privacy.

From preparing children for the jobs of the future, helping them understand the things and
networks around them — so that they are not passively subjected to them but able to act on
them — to making them aware of civic challenges and encouraging cooperation and developing
their creativity, everyone should be taught to use computers, from as early an age as possible.

A consensus has begun to develop in recent years, uniting the scientific community and
economic actors and policymakers. France introduced an optional course for final year high
school students on computer and digital sciences, and now computer science is being taught
in primary and middle schools too.

New Curricula Create an Enabling Environment

In September 2016, and for the first time in France, computer science made an appearance in
the national education system’s curricula for primary school and middle school.
While it is not yet identified as a separate subject, computer science is no longer restricted to
simply using digital tools — as has been the practice for three decades through the ICT approach
— and is now considered as a group of specific concepts and methods1.

In addition to learning about these concepts and methods, computer science provides an
excellent opportunity to conduct active lessons — either through inquiry-based learning or by
projects — and therefore develops cross-curricular skills such as decision-making, reasoning,
discussion, working independently, collaboration, etc.

Principles of the “1,2,3...Code!” Project

The “1,2,3...Code!” project created by the La main à la pâte foundation with support from
the scientific community (in particular INRIA, the French Institute for Research in Computer
Science and Automation) aims to introduce students and teachers to computer science, from
kindergarten to end of 6th grade.2

It offers plugged activities (requiring a computer, tablet or automated device) that introduce
programming basics and unplugged activities (computer science without a computer) that allow
the teacher to address fundamental concepts in computer sciences (algorithms, languages,

1 See page 43 for more details

2 This teachers’ handbook is designed for children in classes between the first and third Levels (from
kindergarten to 6th grade). A second tome is dedicated to middle school (fourth Level).

2 Introduction

how information is shown, etc.).
These activities are organized in ready-to-use progressions specially designed for each Level,
with an emphasis on a multidisciplinary approach and active learning such as inquiry-based
learning or project learning.

These progressions are easily adaptable to both computer-equipped (or with tablets or
automated devices) or non-equipped classes.

Tools for the teacher and the student

The “1, 2, 3...Code!” project is based on two teaching manuals, amongst which the present
one includes:

•	 3 progressions for the class (Levels 1, 2 and 3)

• Ready-to-use lessons, tested in the classroom, divided into themed sequences for each
Level;

• Handouts to be photocopied;

•	 Teaching and scientific insights to guide the teacher in carrying out the project;

•	 A bibliography for the teacher and for the students.

This teaching manual is accompanied by a dedicated website that offers a selection of resources
available for download (specifically for coding) and a forum designed to assist classes throughout
the project. The website is presented on page 342.

3

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 P

ro
g

ra
m

m
in

g
 s

e
v

e
ra

l
s

p
ri

te
s

L
e

v
e

l
2

 -
 S

e
q

.2
a

SCIENTIFIC

BACKGROUND

4 Scientific Background

Scientific Background
Just a century ago, computers did not exist. Today there are billions of them. These computers
and other digital systems, namely networks, telephones, televisions, personal music devices,
cameras and robots have changed the way we:

• Design and manufacture objects,
• Exchange information,
• Keep a trace of our past,
• Access knowledge,
• Practice science,
• Create and distribute works of art,
• Organize businesses,
• Govern countries,
• etc.

Computers have transformed everything because they are versatile. It is thanks to this object,
the computer, that we can use computer assisted design software, modelling and simulation
software, emailing and instant messaging software, file exchange software, video and music
reading programs, digital mixing consoles, computer numerical control systems, encyclopedias,
online classes, databases, blogs, forums and even digital archives. This versatility can be seen in
the number of tools that computers have replaced: looms, calculators, typewriters, telephones,
televisions, cameras and multimedia players, to name just a few.

In all of these applications, computers process information. That is, they systematically apply
operations to symbolic objects. Looking up a word in a dictionary, encrypting and decrypting a
secret message, addition and multiplication of two numbers, producing timetables for students
in a high school or for airline pilots, calculating the area of a farming plot or even counting a
tarot player’s points are all examples of information processing.

A systematic process that enables information to be processed is called an algorithm. Computers
are in fact algorithm-execution machines and computer science is the field of scientific,
technological and industrial activity concerned with the automatic processing of information
by machines.

This scientific insight on computer science begins with the history of the discipline and then
identifies the four fundamental concepts: algorithm, language, machine, and information.

5

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

A brief history of computer science

The story of computer science is the coming together of two schools of thought: the first focusing
on the notion of algorithm and the second on that of machine. In the 1940s, these two notions
were brought together to create the first computers, or algorithm-execution (“computing”)
machines. Other schools of thought that focused on language and information concepts were
added to this mix.
The history of the algorithm dates to the beginnings of writing, as the first traces of writing
discovered were accounting calculations. The scribes of Mesopotamia therefore knew algorithms
to add and multiply numbers, as well as for more complex operations such as compound interest
calculations and inheritance taxes. It is possible to go even further back in history if we expand
the concept of an algorithm to include systematic methods that are applied to things other
than information, which means the production methods for bronze or pottery, cooking recipes
and even the process for weaving fabrics can be seen as algorithms. The story of the machine
is a very old one too, even if we restrict it to the machines that operate using information. The
machines of Heron of Alexandria, cathedral bells, calculators invented by Schickard, Pascal and
Leibniz, and the Jacquard loom all contained elements of information processing.
The history of computer science is a prolific one, spread across several centuries. What follows
is a selection of historical figures associated with its story and who made great strides in its
development. This historic approach helps explain computer science concepts in a way that is
appealing and easy to grasp. However, the story must be accompanied with a word of caution,
as not all contributions can be singularly attributed to one person. Discovery was an incremental
process, with each “inventor” adding to what was produced by their predecessors and often
their contemporaries. This caveat is intended to point out that these people, while geniuses
in their own right, were not the sole inventors of these contributions, but we can evidently
appreciate the major importance of their work as building blocks in a process.

Muhammad ibn Musa al-Khwarizmi

Al-Khwarizmi was a Persian scholar believed to have been born in the 8th

century, circa 780. He lived in an empire under the reign of the Caliph
Al-Ma’mun, which encouraged the study of science and the arts. With
other scholars of his era, he worked in the House of Wisdom, a school
founded by the Caliph in Baghdad for the study of geometry, algebra
and astronomy. He began by translating Greek and Indian scientific and
philosophical manuscripts. With this work, he passed on the knowledge
of these civilizations, such as the decimal positional number system, to
his peers. Al-Khwarizmi then went on to write his own scientific texts,
specifically his book “Kitâb al-jabr wa al-muqâbala” (“The Compendious

Book on Calculation by Completion and Balancing”), in which we can hear the sound “al-
jabr”, the origin of the modern word “algebra”. His desire was to provide the tools that would
solve the problems of daily life. It is best if we take Muhammad Al Khwarizmi’s own words to
explain how his work was aimed to facilitate calculations “that people need for inheritance,
donations, sharing, judgements, businesses and in every transaction between them on land
surveyings, digging canals, geometry and other things related to its aspects and arts (...).” The
mark that Al-Khwarizmi left in history is closely tied to the history of mathematics, thanks to
his work in algebra and geometry. But his name is also intrinsic to computer science, because

6 Scientific Background

each procedure that he describes to solve a problem is a series of instructions to manipulate
numbers. What’s more, Al-Khwarizmi’s name was transcribed as “Algorismi” in Latin, which
later produced the word “algorithm.”

Johannes Gutenberg

Johannes Gutenberg was born in around 1400 in Mainz, Germany.
He trained as a goldsmith, and usde is metalworking experience to
help further his invention: the printing press. However, the story
of the printing press goes further back than Gutenberg. This story,
which demonstrates the importance for humanity of ensuring
that great works withstand the ages and are disseminated,
dates back to the 7th century. Prints were previously made using
woodblocks to reproduce texts and images on pages made of
paper or fabric. Processes that meant identical copies of pages

could be reproduced cut down on manual labor and saw great progress. A key moment of
progress was undoubtedly the invention by Bi Sheng of movable type, the first traces of which
were discovered in China circa 1040. They were first made of terracotta and then metal began
to be used. In Europe, Gutenberg applied a principle common to the history of inventions: he
perfected existing techniques and combined them. He created a metal alloy that proved highly
suited to printing: type metal. He came up with the “printing press,” which was more efficient
than existing techniques for applying the page to the platen. Lastly, he developed an ink that
was thicker and more suited to printing. His invention encountered great success and rapidly
spread across Europe.
Printing, although it did not directly influence computer science, has some interesting ties to the
subject. Firstly, among printing innovations, let us look at movable type. This allowed printers
to fill a page with their choice of characters, which was reversible, whereas previously the full
page had to be printed and could not be changed. The platen could therefore be reconfigured.
Printers could also provide a plate for another press which could then (re)produce the same
page. In a way, simply rendering a machine configurable could be seen as a distant precursor
of programming, which appeared much later in the Jacquard loom, Babbage’s machine, and
lastly in computers. Another significant connection to computer science can be seen in the
cultural revolution that the printing press initiated. An estimated one billion books are thought
to have been printed in the 18th century, which completely changed access to knowledge and
therefore social equilibrium.

Joseph Marie Jacquard

Joseph Marie Jacquard was a French inventor and mechanic, born
in 1752 in Lyon. After working in his father’s workshop as a weaver
he therefore grew familiar with looms, which enabled fabric to be
produced. The loom was widespread at the time and a source of
employment, but it was a complex machine to maneuver. Several
workers were needed to pass the shuttles (which spooled the
threads) back and forth at the right time. Jacquard wanted to automate the loom to make it
both easier to use and more efficient. He adopted the punched paper tape system that Basile
Bouchon added to the loom and Jacques Vaucansons’ proposals for an automated process.

7

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

By improving and combining these two techniques,
he contributed to the weaving loom’s expansion. The
punched card system offers a solid medium which
stores the instructions for passing the shuttle. The
series of punched cards are placed in the loom, and
each card stores instructions for a different step of
the fabric production. When a punched card passes
through the loom, the holes in the card change the
position of the threads, guiding the shuttles through.
Each punched hole line corresponds to a different
step, and a specific design on the fabric. By increasing
the number of punched cards, it is possible to write
the instructions to obtain the complete design on the
full width of the fabric. Just like Gutenberg’s press,
the loom became configurable. A set of cards can be
identically copied and used on another loom, which
produces the exact same fabric with the same design. The same loom with a different set of
punched cards produces another fabric with a different design.
Jacquard’s invention meant more fabric could be produced much faster. It was extremely
successful, with over 20,000 looms built. Since it uses punched cards to give instructions to
a configurable machine, this invention is considered to be one of the computer’s ancestors.
Jacquard’s work is a good example of the usual innovation process. Jacquard sought inspiration
in the most advanced technologies of his era, for example with Basile Bouchon’s punched paper
tape. He adapted and improved several inventions to combine them into a single mechanism,
easier to install and to use. The major progress made by Jacquard with the loom meant it could
be operated by a single weaver, instead of six previously. These workers, known as “Canuts,”
subsequently launched a revolt due to the lack of work often attributed to this invention.

Charles Babbage

Charles Babbage, born in 1791, was a British mathematician
and inventor. At that time, long before the invention of GPS, sea
navigation was guided by observing the positions of stars in the
sky and comparing them with their expected position at that

date. This method enabled sailors
to determine the boat’s position on
the globe. This required calculating
the map of the sky for each day
and for many weeks ahead.
Unfortunately, these calculations
were time-consuming and complex, and mathematicians who
perform them were at risk of error, which would cause accidents
at sea. In 1821, Charles Babbage presented a proposal for a
machine to the London Royal Astronomical Society, which
would speed up calculations and make them more reliable: “the
difference engine.” The aim of this machine was to automatically
solve, through mechanical processes, complex calculations which Drawing of Babbage’s difference

engine

Jacquard mechanism (extracted from a loom) on
display at the Musée des Arts et Métiers in Paris

8 Scientific Background

would predict the stars’ positions. Unfortunately for Charles Babbage, his machine required
extremely fine and precise mechanical parts, which were difficult to manufacture at that time.
He did not succeed in building his machine, but this did not prevent him from inventing a
second, even more powerful machine. Babbage wanted this second machine to do more than
just calculate the position of the stars. He wanted it to be able to execute any task that would
be “described” to it. To do this, inspired by Jacquard’s work, he designed the “task description”
(a series of calculations) to be performed with punched cards. Babbage may not have fully
realized the potential of his invention. It was Ada Lovelace who clearly understood everything
that this “analytical engine” would make possible. Unfortunately for Babbage, who ran out of
funding, the second machine was not made either. Nonetheless, this machine incorporated all
the fundamentals of a computer, which could be programmed by punched cards that gave it the
instructions to execute, as was the case for the first computers that appeared a century later.

Ada Lovelace

Augusta Ada King (Ada Lovelace), was a British mathematician born on December 10, 1815
in London. She was the daughter of Lord Byron, the British poet, whom she never knew.
Her mother, who wanted Ada to have a high-level science education, ensured she studied
mathematics in particular. This was quite unusual for a young lady during that time. When she
was 17, Ada met Charles Babbage and was passionate about his work on the difference engine,
followed by the analytical engine. Ada Lovelace and Charles Babbage formed an excellent
scientific duo. Ada wrote up thorough documentation on Babbage’s machine and supported
him throughout his financial difficulties. He helped Ada deepen her mathematical knowledge,

giving her recommendations to study with the most esteemed
mathematicians in the kingdom.
While Babbage was planning for his machine to be used for digital
calculations, Ada had already imagined a more universal use for
it. At the time, numerical calculations were already completed
automatically by machines such as the Pascaline: this was a series
of wheel dials that could carry out addition and subtraction only.
Babbage saw his machine as a sort of “programmable calculator”:
first, you could explain to the machine what calculation it had to
do (with instructions, i.e. the “program”) then provide it with the

values to which it would apply these instructions.
Ada, a visionary, understood the potential that this machine had, even more than Babbage
himself did. In her manuscripts, she describes the possibility for this machine to manipulate
numbers, but also letters or any other type of symbol. She explains how this machine could be
programmed for tasks other than numerical calculation, such as musical composition. In her
notes, Ada describes all of the instructions that must be given to Babbage’s machine so that
it can perform a specific calculation: the series of successive terms in the Bernoulli sequence.
In doing so, she became the first person in the world to write a computer program. The first
computer programmer was indeed a woman!

9

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

Alan Turing

Alan Turing was a British mathematician and computer scientist, born
in 1912.
He is often presented as the founding father of computer science —
although it is undoubtedly a vain attempt to seek such a founding father
to something that was created collectively.
He made many contributions to early computer science. In the 1930s,
he came up with one of the first precise definition of an algorithm. His
aim was to study what was “calculable.”

Multiplication, for example, is calculable because it can be performed in a certain number of
steps. But what are calculable problems? This was a difficult question, that was a popular topic
of study in the 1930s, and Turing focused specifically on it. While studying the issue, he came
up with an abstract machine — or a machine that was not intended to be really built — but
which he would use to structure his reasoning. Imagining how it functioned enabled him to
better study what was calculable and what was not. This machine was described very simply.
It used a tape which contained a series of boxes that stored data (zeroes and ones).
The machine was able to read what was in the boxes, move from left to right on the tape,
and write in a box. With this machine, Turing showed that it was possible to replace any
other machine, by writing the “program” of the replaced machine on the tape (for example,
multiplication) followed by the “data” to which this program would be applied. This method
of combining program and data in a machine was a key step and today exists in all computers.
During World War II, Turing played a crucial role in building electromechanical machines that
could decrypt the secret codes used by the German military, without knowing the key. After the
war, he helped design the first British computers in the National Physical Laboratory, followed
by the University of Manchester.

Lego® Turing Machine (Rubens project, ENS Lyon): overall view (left) and detail of the reading and
writing head (right).

He also came up with many other ideas about the phenomenological nature of intelligence, on
morphogenesis, the approximate solving of differential equations with a computer, and program
proofs. The last example raises the following issue: we can conduct tests on a program to check
its stability and accuracy. If we find an error, then we try and fix the program; but if we do not

10 Scientific Background

find an error using this method, does this mean there is no error or that we were unable to
find it? Is there mathematical proof that the program is truly without error?
Sentenced to chemical castration because of his homosexuality, considered a crime in England
at that time, Alan Turing committed suicide at the age of 41.

Grace Hopper

Grace Murray Hopper was an American mathematician, born in
1906. During her childhood, she showed a great interest in science
and technology (for example, by disassembling the alarm clocks in
the house one by one, until she could put them all back together
at the age of 7). Her parents encouraged her taste for the sciences
while ensuring that her choices were nurtured, rather than following
tradition in terms of the education of young American girls. Grace
therefore became one of the few women of her era to study at Yale

University and obtain a doctorate in mathematics.
During World War II, she joined the navy as a lieutenant and joined the team working on Mark
1, the first computer in the United States. Grace Hopper was a member of the first group that
could program that machine. Mark 1 received instructions and data from punched cards, as
was planned for Babbage’s machine, and the Jacquard loom nearly two centuries before. In the
1950s, Grace Hopper believed strongly in the idea that computer science should be accessible
to as many people as possible, not just computer specialists and mathematicians. She argued
that punched cards were hampering the development of computers and began working on a
programming language project, which would be close to English and make program writing
easier. The difficulty was to design a program capable of transforming high-level instructions
(in a language similar to English that would be easily understood by a human) into low-level
instructions (the computer’s language). Today, this type of program is called a “compiler”, and
its invention is partly thanks to Grace Hopper. Her programming language, known as COBOL,
became the most widespread between 1960 and 1980.
Grace Hopper is not just famous for making computers more accessible to non-specialists. One
day, when she was programming her computers with punched cards, one of them failed. When
she went to find what happened, she found a moth stuck in one of the holes of a punched
card. She stuck the it into her report, with a comment indicating that the insect was at fault for
the breakdown. The term “bug” had already been used by scientists, such as Thomas Edison,
to identify an error due to the undesired interference by one of them in their experiments. By
applying it to the failed execution of a computer program, Grace turned this into a household
term to describe this situation.

11

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

Grace Hopper discovers a “bug” in 1947

12 Scientific Background

A brief history of the Internet

The idea of connecting numerous computers in a network emerged in the U.S. in the 1960s.
In 1961, researcher Leonard Kleinrock developed a way to share data between computers by
breaking the data into packets, sending them along a variety of different paths, and piecing
them back together in the right order at the receiving end. This is the principle behind the
method still used today to send data — such as emails — on the Internet (see illustration
page 29). The following year, Joseph Licklider promoted the computer as a communication
and resource-sharing tool, and proposed building a network of interconnected computers.
Licklider joined the Advanced Research Projects Agency (ARPA), a state body founded in
1958 to guarantee the United States’ military and technological superiority, following the
U.S.S.R.’s launch of Sputnik I. He became the director of ARPA’s Information Processing
Techniques Office, and it was while working there that he proposed building an experimental
network using the principle of data transmission by packets. This network, named Arpanet,
was deployed in 1969. Only four computers were connected, exchanging data at a speed of
50,000 bits per second (6 kb/s).

The first Arpanet users developed programs that enabled messages to be sent from one
computer to another via the network. The first email, sent in 1972, already featured the
character “@” to separate the addressee’s name from their address. The key functions of
electronic mailboxes — sort, reply, forward — were invented at this time.

The first public demonstration of Arpanet took place in 1972, at an international conference.
It was a great success which contributed to the project’s expansion, the creation of other
networks and inspired the idea of interaction between networks. Such interaction required
modifications in the way Arpanet ran: the solution developed was the TCP/IP protocol, still
in use today on the “network of networks” that is the Internet.

In 1989, Tim Berners-Lee, a CERN network (Cernet) user, wanted to make browsing the
network easier by using a browser and hypertext links. He proposed creating a web that
would allow users to switch between contents via multiple paths. This project, approved by
the CERN, was named the World Wide Web. It is one of the Internet’s networks.

Projects began to abound from the 1990s on, surrounded by stock market speculation,
until the dot-com bubble burst in 2000. The first web browser with a graphic interface was
launched in 1993. It was soon replaced by others, which were in turn replaced. The Yahoo!
Internet directory was created in 1994, before becoming an international portal. Google
began as a start-up in 1998, followed by e-Bay and Amazon, today the giants of the Internet.

13

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

IBM invented

the diskette

Timeline

The lesson “Review: Defining computer science” (page 328) allows students to draw up a similar timeline
using documentary study on the history of computer science.

14 Scientific Background

Algorithms, languages and programs

The ambiguity of the word “code”

“Code” is currently a buzzword. For example, it is used in the title “Read, Count, Write and Code”
in the introduction to computer science in school curriculums. As this word can be ambiguous,
we shall discuss it here.
The first of these ambiguities is the easiest to clarify. Sometimes, the word “code” is used to
refer to the modification of a message to render it unreadable to whoever is not equipped
with the “secret code.” At a later stage in this handbook, this action will be referred to as
“encryption,” which is the act of “encrypting” a message to render it unreadable to whoever
does not possess the “encryption key,” which allows the message to be “encrypted” and also
“decrypted” so that it may be read. In general, the word “code” refers to the action of giving
a machine, usually a computer, instructions. This activity can also be described using the term
“programming.” The instructions are then interpreted by this machine which executes them
to produce a result.
Coding can also be used to represent information with symbols. For example, writing a text
in binary, using zeroes and ones. Depending on the situation, we shall use the terms encode
or decode. In this teaching handbook, “to encode” is the meaning of the verb “to code”, even
though the word is commonly used to refer to programming.
The word “code” has a second ambiguity, which is unrelated to its definition but rather the
perceived notion of computer science through the activity of programming. Computer science is
much more than just programming, although programming is perhaps the most visible activity
in this field. In popular culture, it evokes the power of the programmers, and the distinction
between those who deal with machines as users (even tacitly) and those who make them
operable. An example is the often-exaggerated image of the programmer in a film rapidly
producing lines of code. Another is the image of a screen with full pages of code scrolling in
the background of a report or documentary on computer scientists, most likely because this
creates an impressive, or highly specialized, effect. It is possible that this image contributes
to spreading the notion that computer science is hard to access and reserved for an elite or
minds that are predestined for it. Fortunately, this is not the case. Of course, coding is entirely
related to computer science, but it is just one of a series of cogs in the system. Coding does of
course render concepts visible. But these concepts can be created and developed outside of any
programming, using reasoning as the main driver. This reasoning, together with the mechanical
nature of computers and their functioning, produces computational thinking, and this is how
the algorithms that enable much of our world to run today are developed.

What is an algorithm?

There is no need to prove that algorithms are everywhere. When we enter a request in a search
engine, several algorithms are at work to find the most relevant pages possible. When thousands
of financial market operations are completed per second by a single trader, it is not the human
trader giving the orders, but a high-frequency trading algorithm. When a government wants to
analyze vast masses of data concerning human activities in order to detect suspicious behavior,

15

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

they use algorithms3. Algorithms play a major role in our lives, often without us realizing.
To illustrate the algorithm, the recipe example is quite useful. It is, after all, a series of
instructions to apply in order to obtain a result. Analogies between a recipe and an algorithm
can be taken even further. A recipe can be shared around the world, or it can be kept a secret.
It can be hand-copied or passed on verbally. However, until it is incarnated by actions in the
kitchen, it remains a simple concept. In computer science, this concept is an algorithm. It can
be hand-written, to varying degrees of precision, combining explanations and mathematical
symbols. If it remains in this format without being applied, it is knowledge that yields no results.
The power of an algorithm can be seen when it is interpreted and concretely executed, either
by a human or a machine.
Speed of execution is another issue. A simple algorithm can be interpreted by a human being
by following the steps and writing down the intermediate results, if any. One example is the
division algorithm that students can systematically apply once they have learned it. They can
then execute any division by hand by rigorously applying the steps of the algorithm. They
write down intermediate values and start the operation again until the conditions to stop the
calculation are achieved. For a more complicated algorithm, this can be difficult and for most
of the algorithms that are currently being executed around us, it is impossible to envisage.
Machines can execute these algorithms at increasingly faster speeds every year. For this to be
possible, at least two conditions must be met:
 1. Create and write an algorithm that achieves the desired result.

2. Translate this algorithm into a program that the machine can interpret.

These two activities are central to producing digital objects. Programming may be produced at
different levels of quality, depending on the programmer’s experience and knowledge of the
language used. A program can be written several ways while following the same algorithm.
Certain programmers know their preferred languages so well that they can work extremely
efficiently, writing programs several times faster than programs written by beginners. However,
this is not always enough to obtain efficient programs.
This is because algorithms can also be written several ways. This is simply due to the fact
that they can be designed from several perspectives. An algorithm might be particularly
well-designed but it can also be basic and use the wrong options. As we will shortly discuss, a
poorly designed algorithm cannot be compensated for with efficient programming or a high-
performance computer. A well-designed algorithm, on the other hand, even if it is programmed
by a beginner on an outdated computer, can offer radically superior performance. This
conception of the method, or the reasoning that produces the most efficient algorithm possible,
is a crucial element in computer science. The corresponding discipline is called algorithmics.
Let’s now look at some of the basic aspects of this field, in light of the brief history of computer
science that we have just discussed.

Languages

The first computers were programmed with punched cards. This is what Babbage had planned
for his analytical engine. As we have already mentioned, Grace Hopper wanted to make
programming more accessible and saw the limits of punched cards as an interface between
the machine and those who programmed it. To push beyond these limits, she contributed to

3 The relevance of algorithms from this perspective is not the issue here, but algorithms are indeed envis-
aged to process the vast quantities of data that cannot be analyzed “by hand”.

16 Scientific Background

the creation of compilers. This involved writing a program
in a language closer to human language. The challenge was
translating programs into the language of the machine so that
it could execute the corresponding actions. This translation
became known as “compiling”. The program that executes the
compiling is a compiler. To compile a program, there are many
challenges to overcome, such as:

• Recognizing and separating words and language
elements to create units that can be subsequently
used. For example, the line of code result=a+3 must
enable the variable result, the operator =, the variable
a, the operator +, and the number 3 to be recognized.

• Detecting inconsistencies in the language and ensuring
the program is correct from a syntax and grammatical
point of view (i.e. ensure that the program respects
the rules of the language in which it is written).

• Detecting semantic inconsistencies. For example, if two variables have the same name,
it will be impossible to translate the program for the machine, as there is an ambiguity
that makes compilation impossible.

• Effectively generating code, in the machine’s language, from the elements constructed
in the previous steps.

Compilers were a major advance in the history of computer science. It is obviously much easier
to use words, numbers and operators to program, rather than enter the instructions one by
one for the machine on a punched card. Today this contribution is seen in the multitude of
programming languages that exist, such as Scratch, the language we have chosen to use to
introduce students to programming. These languages can vary greatly. In the teaching project
proposed for Level 3 students, one lesson (page 207) illustrates the diversity of languages that
can be used to guide a robot: autocentered and allocentered languages can be used (the Pixees
website offers a robot game, available at https://pixees.fr/?p=724).
Programming languages have extremely limited and highly specific vocabulary, with no
ambiguity whatsoever. In our example, the robot can be guided with four allocentered (or
absolute) instructions: North (meaning, “go forward one step North”), South, East, and West.
In an autocentered (relative) language, the robot can respond to three instructions: forward
(take one step forward straight ahead of you), right (meaning, “turn 90° to your right”), and left.
We can even further simplify the left instruction to right-right-right, which would reduce the
vocabulary needed to just two elements. It is possible to switch from one language to another,
but it is not an easy exercise, and attempting it in the classroom is a good way of showing how
important compilers are!
Once the major contribution of compilers — and therefore programming languages — is
established, all that’s left is to program! To do this, the best way is to begin by properly designing
the algorithm before translating it into a program (and the compiler follows by translating this
program for the machine). Let’s look at how these famous algorithms are created, what they’re
made up of and most importantly how we can produce them!

Which language can be used to
command this robot?

(extract from teaching progression in
Level 3, page 207)

17

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

Algorithms, reasoning and computational thinking

We know today that all algorithms can be written with a few basic instructions that are
assembled using control structures.
The most common basic instruction is attributing a variable, for example, a=3, where the
execution involves attributing the variable a to the value of 3. This idea of attributing a variable
therefore requires understanding the concept of variable: a box that contains a value that can
be used and modified while the program is running.
The number of times a video was viewed on a streaming platform is an example of a variable.
Every time the video is viewed, the “number of views” variable is modified (for example, the
instruction number of views = number of views +1 means we can attribute the new value,
which is one more than previously, to the variable “number of views”.)
Other basic instructions are displaying a message on a screen, moving a sprite, etc.
These basic instructions are then assembled with control structures, which enable complex
instructions to be created by assembling simpler ones. The main instructions are:

•	 the sequence: perform one instruction followed by another;
•	 the test, which enables a specific instruction to be performed, depending on the

condition. For example, in a washing machine, if the weight of the laundry is less than
two kilograms, start the energy-saver program, otherwise start the standard program.

•	 the loop, which enables an instruction to be repeated several times.
But other control structures exist, for example in event-driven programming (particularly in
Scratch), an instruction is triggered following an event.
The first computers were capable of executing algorithms made up of these elements. These
machines are therefore capable of executing any algorithm in the world. They are universal
machines. We can be certain that for the pioneers of computer science, seeing algorithms come
to life in universal machines must have been exciting.
Just like these pioneers, beginner programmers discover the capabilities of their computers
progressively. They begin with simple, well-known algorithms such as mathematical operations
(addition, multiplication, etc.). Then they move on to more complex algorithms, reproducing
mathematical sequences such as the Fibonacci sequence or the Bernoulli numbers. It was in
fact while writing a program to calculate the Bernoulli numbers on Babbage’s analytical engine
that Ada Lovelace became the first person in the world to write a computer program.
There are lots of other programs. The universal machine allows us to apply known algorithms,
but also lets us look for algorithms to solve problems that we do not yet know how to solve.
However, does simply discovering an algorithm necessarily mean that this algorithm will always
provide a solution? To delve deeper into this question, we will look at “computational thinking.”
Computational thinking is a body of knowledge and thought processes used to understand the
world we live in and help us guide our actions. It covers a vast range of concepts, and we will
try to explain some of them here4.

Everyone, every day, uses algorithms — sometimes without really realizing. We have established
strategies, habits and reasoning that we apply to our daily activities. In a supermarket on
shopping day, we can choose to walk up and down every aisle checking if it contains the product
on our shopping list. But why would not we make life easier by writing this list beforehand,
according to our knowledge of the store, so that the products are listed in the right order?
Going to work, we can plan our journey depending on the day of the week, because everybody

4 The article “What is Computational Thinking” on Computer Science for Fun http://www.cs4fn.org/
computationalthinking/ offers a description of what this expression covers.

18 Scientific Background

knows that on Tuesdays and Thursdays, Kolmogorov Street is completely jammed, and to be
avoided. Lastly, while looking up a word in the dictionary, we open it at the most likely spot
depending on the position of the first letter of the word in the alphabet (near the beginning for
the letter “C,” near the middle for the letter “P,” etc.). Then, by trial and error, we flick backward
or forward a few pages, according to the letter at the start of the words on the opened page.
When the first letter of the word is found, we start again with the second letter, and so on.
Computers can help us process these daily tasks. We must iterate the problem, then describe
an algorithm based on the four elements mentioned above (instructions, loops, tests, and
variables) that can solve the problem. So that these algorithms can be automatically executed,
they have to be translated into programs so that a machine can run the instructions. Part of
computational thinking means rationalizing these processes so that a machine is capable of
executing them.
We will now have a look at the kind of problems we can solve using computational thinking
and algorithms. There are problems that can be solved with algorithms inspired by human
reasoning. These are algorithms such as drawing up the shopping list in the order of the store’s
aisles. Many algorithms are created this way. The person that develops the algorithm turns
their own thinking process into a written process. It is like explaining a method to someone
while making sure that there will be absolutely no error in how it is interpreted. There are also
problems that can be solved with algorithms inspired by human reasoning or practices, but
which are made stricter and more general by adding a study to the approach. Let’s take the
example of looking for a word in the dictionary. There is a very similar exercise which consists
of looking for one’s name or surname in a list (for example, to see if we have been successful
in an exam). Let’s try and iterate the way this task is carried out.
Imagine an unsorted list of a few dozen names. Each person will take a few seconds to find their
name (or make sure they’re not on the list). Next, if the same list is provided in alphabetical
order, the exercise is much quicker.

The difference in speed is because when the list is sorted, a much more efficient method can
be used than with an unsorted list. When it is not sorted, we look all over at random, or else
we read through a list systematically from start to end, checking names one by one. However,
when the list is sorted, we can see the place where the names that begin with the same letter
as ours are found. Followed by the second letter, and so on.
 This approach works, but it can be perfected. If there is a very large number of objects (like in
a dictionary, or a country telephone directory with millions of entries), we can make huge leaps
forward or backward to save time. There is an extremely efficient algorithm for searching a
sorted list, the most efficient known algorithm for this problem, and it is called a “binary search”.
To find an item in a sorted list, we cut the list in the middle. If the item was in the middle, we’ll
find it; otherwise we know in which half of the sorted list it is to be found. We can therefore
start afresh with the binary search on the remaining half-list. And so on. At every stage, the
list we are searching is twice as short.
A list of 20 names can be searched in four attempts at most. The number of operations in the
worst case can be found by the number of times that 20 can be divided by 2 before we arrive
at 1 (the first division can be rounded down if there is an uneven number of lines). Without
a binary search, in the worst-case scenario 20 iterations would be necessary to successively
read each name from first to last in order to realize our own was not there (the algorithm
testing all thoroughly all possibilities is called “brute force”). The power of the binary search
can be quickly seen when the lists are very long. A list of 300,000 items can be searched in

19

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

just 19 operations. Let us now imagine that each reading operation in the table requires a
millisecond on the computer. The following table gives an estimation of the application time
of both algorithms in the worst case:

Number of

names on

the list
300 3,000 30,000 300,000 3,000,000

Algorithm 1:

brute force
0.3 s 3 s 30 s 300 s 3,000 s

Algorithm

2: binary

search
0.008 s 0.012 s 0.015 s 0.018 s 0.022 s

Comparison of time taken in the worst case to find a name in a sorted list using two different algorithms.
The simplest algorithm (reading the list from beginning to end) takes 10,000 times longer to execute
if the length of the list is multiplied by 10,000 (going from of a second to one hour); the binary search
only takes 1/100 of a second longer.

There are numerous approaches to developing algorithms. We can only mention a few of them
here. However, it is important to look at one type of problem in particular. We know how to
write a correct algorithm, but for this problem there is no known solution. Or, we should say,
that the solution cannot be obtained within a reasonable amount of time. This is one of the
fundamental aspects of algorithmics. For example, consider the “traveling salesman problem”
that we talk about in one of the unplugged lessons for Level 3 students (page 267). This involves
finding the order in which a traveling salesman must visit a number of cities so that he spends
as little time as possible on the road. If there are only two cities to visit, the answer is easy, with
just one journey possible. With three cities, there are six possible journeys to compare (the
number six is reached by distinguishing “identical” journeys that can be travelled in opposing
directions, for example Lyon-Bordeaux-Marseille and Marseille-Bordeaux-Lyon). With four
cities, 24 journeys are possible. With 20 cities, there are already over two trillion possibilities.
A computer would take several billion years to test all these possibilities to find the best one!
This problem is found in several applications, such as the mail carrier’s (or garbage collectors’ or
snow-clearing vehicles’) route: in which order should the streets be covered? The same problem
applies to factories where articulated arms (or robots) screw nuts and bolts to a plate in different
locations: in which order should the nuts and bolts be screwed to minimize movements and
therefore save energy and prolong the lifespan of the robot? When the number of “objects”
(cities to visit, nuts and bolts to screw, etc.) rises, the number of possibilities explodes. This is
called a combinatorial explosion or exponential growth. Beyond a relatively small number of
objects, the solution to all these problems is simply unknown.
Of course, to reduce calculation time, we can envisage using a more powerful computer or a
more efficient language. The new program, written by an experienced programmer in a more
efficient language, may be ten times or even one hundred times faster. But when the estimated
calculation time is 10 billion years, it may be reduced to “only” a hundred million years. Just for
the sake of reasoning, we could even imagine finding a computer architecture, programming
language and a system that lets us calculate the exact solution to the journey across 20 cities
in a minute. What would happen if the initial problem changed slightly? Let’s add another city:
it will take one minute for each of the 21 cities, therefore 21 minutes to find the solution. Now
let’s add a second city: the super-computer will be working for seven hours. A third city? The

20 Scientific Background

calculation goes beyond seven days. This imaginary machine, completely outside the realm of
possibility, will struggle with the addition of just a few extra items.
However, there is hope, because there are several methods to deal with these problems, but
they do not calculate the exact solution. They offer a solution that appears suitable, which can
be improved on in several operations, and when it is deemed too difficult to improve yet again,
the calculation stops there — a good enough effort has been made. In computer science, an
approach that offers a satisfactory, but not optimal, result is called a heuristic. In a way, this
comes down to applying the old saying, “perfect is the enemy of the good.” Knowing how to
recognize these problems for which we cannot calculate a solution within a reasonable amount
of time is a major aspect of algorithmics. If a program takes a long time to perform a task, it may
not be due to a bug or poor language programming. It may simply be because the algorithm is
correct, just like the program, but it may take a long time to perform the task.

This suggested route between Nantes and Lyon is not the best possible route. Finding it would take billions of
years of calculations. It is a heuristic, a compromise between the quality of the route and the calculation time
necessary to find it. The best route is probably not much shorter than this one. © GoogleMaps

Of course, this does not mean that we can do without experienced programmers who are
extremely familiar with their preferred languages, nor does it mean technological progress is
irrelevant. Many would be happy to see their favorite software improved to be more efficient
by wiser programming or a faster processer. But advances in algorithmics are essential to reach
better knowledge of the nature of problems we deal with and how they can or cannot be solved.

21

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

What is artificial intelligence?

The term “artificial intelligence” (AI) is used to describe algorithms and machines that are
equipped with forms of “intelligence.” It also refers to the field of study that studies these
algorithms, which was created in the 1950s. The machines studied in AI are extremely
diverse, both in terms of their mechanisms and functions and also their designers’ aims.

Examples of such algorithms are those that allow computers to beat the world’s greatest
chess players or assist mathematicians in automatically proving certain theorems. These
algorithms require the clever manipulation of symbols, and the aim of their designers is to
build efficient machines capable of assisting us in daily tasks such as searching for information
on the Internet or solving logistical problems. While they are extremely efficient for specific
tasks, these algorithms function very differently to the human brain and are not capable
of independently adapting to new tasks (without the help of an engineer that reprograms
them).

Other work aims to build algorithms that create models of human cognitive and neural
processes, in order to help better understand them. Some research labs create models of
the learning and development processes of children’s sensory and motor skills, or language
acquisition, often by experimenting on robots. However, the mechanisms that are used still
have cognitive and adaptation capacities that are far removed from those of young children,
and there are still fundamental comprehension and cognition problems to be solved.

In recent years “Big Data” (vast quantities of data) has become increasingly important in the
development of new forms of artificial intelligence. For example, researchers instructed a
program to view thousands of images of a cat; the program then independently constructed
the “concept” of a cat. Automatic translation also falls under this heading. Google’s
translation algorithm, for example, learns gradually as it translates.

22 Scientific Background

Computing objects: computers,

robots, networks and more
As we have previously mentioned, computer science was born with the emergence of machines
capable of executing algorithms. These “universal” machines are what we call computers today.

What is a computer?

A computer is a machine capable of automatically processing information and memorizing it,
and which can be programmed. Data manipulation is a result of arithmetic and logic. While the
word “computer” is often associated with the image of our personal computers, with screens
and keyboards, computers in the wider sense are today present in many everyday objects in the
form of “embedded” processors in these objects5: telephones, tablets, electronic watches, cars,
planes, traffic lights, cameras and video cameras, televisions, household appliances, interactive
games, hearing aids, thermostats and robots, which we’ll talk about later on.

From mechanical computers to microprocessors

Today, most computers are electronic machines. However, the first computers were mechanical.
A pioneer computer scientist, Charles Babbage designed the first computer in the early 19th

century, in the form of a machine made of a complex system of mechanical cogs and gears
(see page 7). Calculation instructions were given to this machine in the form of punched cards,
following a principle similar to the programming of mechanical looms. Babbage’s engine was
capable of completing loops and conditional branching in particular, which meant deciding on
the follow-up instructions to be executed depending on the result of a calculation.
The first electromechanical computers appeared during World War II. They were used to
calculate missile ballistics. These computers used electricity to activate and deactivate
mechanical relays in order to carry out calculations. Fully electronic computers appeared shortly
after, based on the use of vacuum tubes. The Colossus in Great Britain was an example, and it
was used to decode secret messages sent within the German Army (see page 9 on Alan Turing).
Vacuum tubes were then replaced by transistors, whose small size, low energy consumption and
sturdiness meant they were widely used for integrated circuits. The constant miniaturization
of integrated circuits resulted in the emergence of microprocessors in the late 1950s.

Vacuum tube from 1947 PNP transistor from 1953
Intel© 4040 microprocessor
from 1974. Contains 3,000

transistors.

Intel© Core i7
microprocessor from

2014. Contains 2.6 billion
transistors.

5 There are around ten times more embedded computers than “classic” computers (with screen and key-
board etc.) in the world.

23

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

Today, research labs are seeking alternatives to electronic circuits for the computers of the
future. In particular, they are studying how to use the properties of matter to accelerate certain
types of calculations (such as quantic states in quantum computers), or how to use certain
complex molecules (such as DNA in DNA computing).

Computer components

Most current computers are based on four entities: the control unit, the arithmetic logic unit
(ALU), the memory (RAM – random access memory – and ROM – read only memory) and the
input and output devices. These entities, often in turn made up of several components, are
interconnected via electrical conductors (copper wires and cables) which are generically referred
to as “busses.” A bus transmits information following a specific code, the “communication
protocol.”
The control unit is the conductor, directing all of the other entities. It reads and decodes the
instructions and data in the memory, transforms it into signals that activate the other entities
(for example, it may send the ALU a calculation to perform, retrieve the result and store it in a
specific location in the memory).

The central processing unit (CPU) is often used to refer to the control unit, the ALU and the
special purpose registers, used to memorize the location of the next instruction in the memory.
A computer’s memory can be imagined as a set of compartments where we can store and
write numbers (encoded according to binary code: an elementary circuit switched on is coded
with “1” and an elementary circuit switched off is coded with “0”). Each compartment has an
address which enables the other components to locate it.
Computers are often connected to input and output devices, or peripheral devices, which
allows them to exchange information with the user. In addition to keyboards, mice, hard disks,
screens, speakers and printers, the peripheral devices of most everyday embedded computers
are sensors (for example, of light, movement, heat, GPS signal, etc.), actuators (for example
for engines, valves, radiators, etc.) and especially other computers, located inside or outside
the same object. For example, a personal computer or telephone contain several computers
for sound or image processing and which communicate between themselves, as well as with
other external computers, connected to the Internet network.

24 Scientific Background

Robots

Among the objects that have embedded computers, “robots” play an increasingly important
role in science, society and the economy. Robots are everywhere: in factories and fields, in
the depths of the ocean and in space, in gardens and in living rooms. What’s more, they have
become a part of our culture and some of them contribute to the changing vision that we have
of ourselves.

Some examples of robots. From left to right, and top to bottom: mechanical arms
used in the automotive industry; humanoid robot designed to recognize and replicate
emotions; robot explorer on Mars and military robot designed to carry heavy loads
across hilly terrain.

From a technological standpoint, a robot is a machine equipped with sensors (contact, distance,
color, force, etc.) which allow to sense its environment, with engines that let it move and operate
in this environment, and a system that controls what the robot performs depending on what it
perceives. A fundamental characteristic of robots which distinguishes them from automatons is
this feedback between perception and action. Automatons, such as those invented by Jacques
de Vaucanson and Pierre and Henri-Louis Jaquet-Droz in the 18th century, are not robots because
their movements do not depend on what happens around them: they had no sensors and their
sequence of actions was fully predetermined by the program.
In practice, this definition of a robot covers a vast diversity of machines: programmable
articulated arms in automotive plants, cars (in driver assist mode) and planes that today are
vastly automated, vacuum cleaners that do the housework alone, certain electronic toys, and

25

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

biomimetic robots in the shape of animals (monkeys, fish, etc.) that are sometimes seen in
research labs.
This diversity is not just in terms of shape, but also in terms of use, which implies a diversity of
functioning logics. Robots can therefore be designed to fall into one of two specialized fields:
autonomy or adaptation and/or learning capacities.

Autonomy: There are robots that can function without human guidance, and others whose
behavior is either influenced by a human or almost completely controlled by a human. For
example, in a factory, the robots working on a production line and which always repeat the
same gesture, often do so autonomously. However, the robots used in nuclear power plants
to operate in high radiation zones are generally remote controlled by a human who tells them
where to go and what to do after each action.

Adaptation and learning: The behavior of certain robots is programmed as non-
modifiable from the outset by the programmer, whereas others are capable of acquiring
new behaviors and skills through their experience. Their behavior evolves according
to the history of their interactions with the environment. Some robots are therefore
capable of recognizing objects in images or even learning to walk while experimenting
and assessing different strategies on their own. These adaptation mechanisms are
made possible by “learning algorithms,” which are based on the automatic detection of
regularities in the data flow received by the robot, and on the “optimization” methods
that enable the progressive and iterative refinement of the parameters to solve a problem.

Example of the iterative process that allows “generations” of a robot to learn to perfom a task themselves (for
example, movement).

With these learning algorithms, certain robots are capable of inventing solutions and behaviors
that are not pre-set by their designer, and even of independently selecting objectives that
are not pre-programmed. For example, it is possible to program a robot by instructing it to
look for new situations so that it can increase its knowledge of the world around it. So, some

This new generation follow the same steps of
testing, selecting and breeding, as do the next

generations, again and again, until the efficiency
of the architecture cannot be improved any more.

A new generation of robots
is created by breeding
the selected robots by

exchanging parts of their
architecture.

A darwin-like selection
selects only the most efficient

robots.

These architectures are uploaded onto robots
(real ones or computer simulated ones)

Random creation of a first generation of a
hundred of different control architectures.

The behaviour of each robot is tested, and its
efficiency is marked

26 Scientific Background

algorithms mean these machines are equipped with forms of learning and creativity. However,
these capacities and the performances of these algorithms are today, and probably for the
foreseeable future, very weak in comparison to the adaptation and reasoning capacities of
many animals, and especially humans.

As we have seen above, these various functioning methods meet a number of needs: there are
a great many reasons, and therefore functions, for which robots are built and used. We could
consider three categories of functions: working and exploring; human assistance and modelling
the cognitive and behavioral mechanisms of living things.

Working and exploring

Most robots currently in service in the world are industrial robots, of which there are around
nine million. Very early, companies took an interest in these machines for two reasons:

- Firstly, robots can be used to replace human workers for repetitive, menial tasks that
require low skill levels, such as assembling, painting or soldering parts;

- Secondly, these machines are able to conduct production line work much more quickly
and efficiently than humans.

The first industrial robot, Unimate, appeared in 1961. It was an articulated arm installed in a
General Motors car factory, and it handled heavy foundry parts. In the 1970s, the use of robots
in industry took off. Today, robots are present in every industry and are no longer restricted to
the automotive sector. For example, in the agriculture and agrifood sectors, robots can be seen
in the fields harvesting fruits and vegetables: some of them cut, squeeze and bottle; others sort
and fill cartons; and other group the products into pallets. In some airports, fleets of robots
transport baggage and load them into the holds.

Robots are not only useful in industry for simple, repetitive tasks; they are also used to work
in environments that are dangerous for humans. The nuclear industry is a typical example.
Whether they are autonomous or partially remote-controlled, nuclear plant robots can move
around in confined, radioactive areas, they can handle dangerous substances and perform
maintenance on other machines. Another example is the oil industry: underwater robots,
for example, are used to check the condition of ships’ hulls to prevent accidents and identify
vessels ready for decommissioning.
Lastly, robots are crucial for exploring places where humans cannot go, first and foremost
space and solar system bodies. In 1996, the first mobile robot landed on the moon, onboard
the Surveyor probe. Next came the Soviet Lunokhod, followed by the series of U.S. Mariners.
In 1997, a robot landed on Mars: Sojourner was propelled by the energy it captured using solar
panels. It sent thousands of pictures to Earth, and was much adored by the general public.
Sojourner’s navigation system was partly autonomous, because at such a distance from Earth,
it is extremely difficult to operate by remote control in real time. In 2004, a new robot mission
attracted the whole world’s attention: Spirit and Opportunity, equipped with spectrometers and
an arm which allowed them to dig into the surface, offering proof that water flowed on Mars.

Assisting humans with everyday tasks

While the 20th century saw the rise of worker and explorer robots, at the dawn of the 21st

century, another great family of robots began to take off: human assistance robots. In our
homes, robotic assistance for household chores is becoming increasingly widespread. Robotic

27

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

assistants are also used in stores and in the workplace. The medical field has been particularly
transformed by robotics: while surgery assistant robots have been used daily for around 15
years, today there are new uses emerging. Robots can assist people with physical or cognitive
difficulties, for example to help them get up and sit down, to stimulate them cognitively when
they have memory problems, or to play a facilitator role in communicating with family or
medical teams. Tomorrow, researchers will introduce even smaller robots to operating theaters:
miniaturized endoscopic capsules capable of exploring intestinal tracts, arteries and veins to
help the surgeon diagnose an illness. In the past few years, robotic prosthetic hands and entire
arms have emerged, which can be used for amputees.

Robotic prosthetic hand©BeBionic

Modelling living things and cognition

Robots have become essential tools for studying and making models of the complex systems
in the field of life sciences. In particular, robots today are used in research labs to understand
how living things adapt to their natural environment, in terms of behavior and deployment of
cognitive abilities. This behavior is caused by the dynamics of interactions between the brain,
the physical body and the environment, dynamics that are being constantly redefined because
the brain changes with each new interaction. Embedded in robots are a “brain” (or programs
that allow it to process the information acquired by the robot according to specific rules),
“sensory organs” (sensors) and “motor systems” (actuators). In this way, just like living things,
robots can change and be changed by the physical environment that they operate in. Their
“brain” is therefore modified too, because the robot acquires new skills that can be reused in
later interactions.
Researchers can study the complexity of the brain-body-environment interaction, by conducting
experiments that are possible on robots but impossible on living things — such as, for example,
“switching off” a part of their artificial brain to see how the behavior is modified, or by altering
body parts. Some research labs also study motor control, visual perception, spatial awareness
and even speech and language learning and development mechanisms in humans. In these
projects, interactions with the neurosciences, biology, psychology and even ethology play a
central role.

28 Scientific Background

Poppy, an open source humanoid robot. It was developed by Inria for research on cognition and for educational
projects. For more information: https://www.poppy-project.org

Networks

Today, most computers are interconnected, and rare are those disconnected from a network.
We connect them to be able to exchange information, whether this is sending an email or
downloading information stored on the Wikipedia computers to read them.
We also interconnect computers so they can work together on tasks that are too vast to
be performed on a single machine. Now, there are computer “farms” that group together
thousands, even millions, of machines — which, individually, perform to standard levels — in
the same, air-conditioned hangar, to conduct increasing numbers of calculations per second.
The first long-distance networks appeared at the end of the 1960s. There were only around 15
interconnected machines in 1971, a thousand in 1984, a million in 1992 and today there are
several billion. The first email was sent in 1972, the first website made in 1991 and the first
tweet posted in 2006.
In the old telephone networks, two telephones had to be physically connected so they could
communicate. Switchboard operators performed these connections, which meant you needed
a line for every conversation.
Most modern computer networks follow a more efficient approach, called packet switching.

The information is broken into packets and sent one after the other. At each network node
(which is connected to a chain), routers receive these packets and pass them onto the next,
until they reach their destination.
Many forms of technology have been proposed to exchange these packets between computers,
at risk of turning computer networks into something resembling the Tower of Babel. Fortunately,
the Internet allows all the computers connected to it to communicate despite their differences.
To achieve such a feat, scientists and engineers applied a standard information technology
approach: the problem is broken down into sub-problems, which are resolved separately, and
the partial solutions are combined. This way, the problem of exchanging information between
computers is broken into layers.

29

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

This breakdown is what makes a global-scale network possible: the technologies are
interchangeable within each layer, and the whole lot work together thanks to standardized
interfaces between the layers. Internet Protocol (IP) is the name of a protocol that lets any local
networks connect among themselves. This is why the Internet is described as the “network of
networks.”

Romeo uses his email program to send an email to Juliette (1). This message is first of all encoded in ASCII (2)
and then in binary. A router breaks it down into several packets (3: in reality, there are lots more packets!). Each
packet travels across the network via several other routers (4). The packets are finally put back together (5), and
the message is transmitted to Juliette’s computer (6), before being decoded and displayed on the screen (7).

30 Scientific Background

Internet or Web?
In everyday language, and often in the media, there is no difference between these two
terms. Wrong!
Internet is the “network of networks” and the Web is just one of the networks that the
Internet connects (see page 12 for the history).
The World Wide Web, invented in 1990 at CERN in Geneva, is a network of pages connected
solely by hypertext links (they are easily recognizable because their Uniform Resource
Locator — URL, or their address — often begins with “www.”). But there are other networks
on the Internet, such as, for example:

- Electronic mail (email) services, which use Simple Mail Transfer Protocols (SMTP),
Post Office Protocol version 3 (POP3), Internet Message Access Protocol (IMAP), etc.

- Instant messaging services, or chat, use Internet Relay Chat (IRC) protocol, Extensible
Messaging and Presence Protocol (XMPP), etc.

- The Usenet forum (newsgroups) servers use the Network News Transfer Protocol
(NNTP).

How information is represented6

The notion of representing an object, either tangible or abstract, using another is an ancient
one, because all languages are based on representing objects using sounds.
As there are too many objects for every single one to be represented by a different sound, they
are represented by a series of sounds, selected from a small collection. For example, standard
French uses thirty-six sounds, or phonemes, to make up words. In a language, a message is a
finite sequence of units chosen in a finite set. This notion, however, is not entirely satisfactory
in spoken languages, where the volume, delivery and intonation, etc. of the message contribute
to its meaning, just as much as the sequence of units which form the message.

How much information does a text contain?

Writing, and in particular its use to express languages, eliminates these accessory elements,
but it is a regression — at first — because the earliest written languages associated a different
symbol with every object. It was not until the alphabet was invented that the idea of associating
a sequence of units taken from a small set (the alphabet) emerged, rather than assigning a unit
to each object. The French alphabet, for example, contains around 110 characters: 42 lower
and upper-case letters (the 26 basic letters, 13 accented vowels, the c cedilla and 2 tied letters),
10 numbers and around 20 punctuation marks.
The number of sequences of n characters that can be formed by selecting them from an
alphabet of “k” elements is kn. There are k possibilities for the first character, k possibilities
for the second... and k possibilities for the nth character. The total number of possibilities is
therefore k * k * ... * k (n times) i.e. kn.

6 The “1,2,3...Code!” project proposes several activities for Level 2 and 3 students to work on how
information is represented (text and images), in particular in the lessons 1.2 and 1.3 page 115, 123(Level
2) and 1.2, 1.3, 1.4, 3.1, 3.2 and 3.3, (page 213, 219, 225, 296, 304, 309)(Level 3).

31

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

The greater the number, the more information is contained in each of these sequences. For
example, a 4,000-character text chosen from the 110 characters of the French alphabet contains
more information than a 2-character text chosen from three.
The unit of information is called a bit.
For historic reasons, we often use another unit of data, the byte, which is equal to eight bits, and
its multiples: the kilobyte (KB) equal to a thousand bytes, or eight thousand bits; the megabyte
(MB) equal to 1 million bytes; the gigabyte (GB) equal to one billion bytes; the terabyte (TB)
equal to one trillion bytes; and the petabyte (PB) equal to one quadrillion bytes.
The quantity of information contained in a character of the alphabet is roughly a byte. In a page
of 2,000 characters there are around two kilobytes; in a book of 600 pages roughly a megabyte;
a small library containing one thousand books contains roughly a gigabyte. The collection of
printed books at the National Library of France (BNF), which holds 14 million volumes (excluding
images and films, etc.) is approximately one terabyte (14 terabytes to be precise). A terabyte is
also the capacity offered by a disk that costs approximately 50 euros. A petabyte is the size of
one hundred National Libraries. Every year, CERN (European Organization for Nuclear Research)
produces around 15 petabytes of data.

Binary: A two-letter alphabet

How is a number represented?

An entire sector of information technology focuses on data representation in the form of a
sequence of symbols from a finite alphabet, often an alphabet that only contains two characters:
0 and 1. So, to represent all numbers in an alphabet that contains just these two characters,
we can associate a sequence of four 0s or 1s with each digit, for example:
• 0: 0000
• 1: 0001
• 2: 0010
• 3: 0011
• 4: 0100
• 5: 0101
• 6: 0110
• 7: 0111
• 8: 1000
• 9: 1001

Intuitively, to represent a number, the first idea we might have is to place the representation
of each of the digits next to each other. For example, the number 13 would be represented
by placing the representation 0001 of the digit 1 with the representation 0011 of the digit 3:
00010011. This rather long notation is not used in practice for numbers.
Another, shorter representation is found by representing the number in the base two system.
The number 13, for example, which is broken down into a unit, zero packets of two units, one
packet of two packets of two units and one packet of two packets of two packets of two units
(1 + 4 + 8) is written from right to left: 1-0-1-1, or 1101 from left to right.

32 Scientific Background

To write the number 13 in base two, we must break it down as a sum in powers of two.
To do this, we need to perform a series of divisions by two, until we obtain a quotient equal to 0.
The digits (the remainders of the divisions) must then be placed in order (units on the left).

A succession of 64 “0 and 1” characters allows us to represent the numbers 0 to 264 - 1 =
18,446,744,073,709,551,615. The question of number representation does not stop there,
however, because negative and decimal numbers have their own representation method.

How is a text represented?

The representation of textual characters — and texts which are successions of textual characters
— is also an extremely interesting question. An initial way of representing textual characters was
by associating a group of 7 “0 and 1” characters to each character of a 95-character alphabet
(26 lower-case, 26 upper-case, 10 digits and 33 other symbols, including punctuation marks).
The textual character “a” was represented by 1100001, “b” by 1100010, and so on. A word
was simply represented by aligning the representation of these characters, or its letters. The
word “Le,” for example, was represented by aligning the 1001100 representing the character
“L” and the 1100101 representing the character “e”: 10011001100101.

But this representation, called American Standard Code for Information Interchange (ASCII),
was suitable for English and not languages like French, which use diacritical marks such as
accents and cedillas, for example. The ASCII representation was therefore extended several
times, until it became Unicode, which provides for the roughly 110,000 characters used by the
various scripts of the world, including non-alphabetic scripts such as Chinese.

How can an image be represented?

Representing images is more difficult, because this requires breaking down the image into pixels,
and coding the shade of each pixel. In a black-and-white image, each pixel is represented by a
single “0 or 1”: 1 for black, 0 for white.

33

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Left: a black-and-white, 16x16 pixel image. Right:
binary coding for this image. To make it easier to read,
we have arranged the bits on a 16x16 grid.

In a grayscale image, each pixel is typically represented by a number between 0 and 255, in turn
represented in base-two by a group of eight 0s or 1s. 0 = 00000000 if it’s black, 1 = 00000001

if it’s dark gray, ... 254 = 11111110 if it’s light gray, 255 = 11111111 if it’s white. Of course, the
decision to use 255 shades of gray is arbitrary and other formats do exist.
In a color image, each pixel is typically represented by three numbers, all of them between 0
and 255, which indicates the quantity of red, green and blue in this pixel. For example, a bright
pink pixel is obtained by combining 249 units of red, 66 units of green and 158 units of blue.
The number 249 is represented in base-two by 11111001, the number 66 by 1000010 and the
number 158 by 10011110, and thus a bright pink pixel is represented by the succession of 18
0s and 1s: 11111001100001010011110. An image, naturally, is represented by aligning the
representations of each of its pixels. An image made up of two bright pink pixels is represented
by: 1111100110000101001111011111001100001010011110.

Organizing the information

These principles allow us to represent small objects: a number, a text, an image, a sound or a
video, for example. We can, for example, use them to save a single text, image, sound or video
on a computer disk. However, very often we want to save several of that type of object on such
a disk. This leads us to other principles which, rather than representing the information, will
allow us to organize it.
A disk is a space on which it is possible to store a large number of 0s and 1s, generally eight
trillion for a disk with a terabyte. In order to store several texts and images, we can begin by
breaking this space down into several zones called “files,” which allow us to store a text, an
image, a sound or a video, for example. But when these files begin to pile up, we need to put
them into folders, and these folders into other folders. Essentially, we structure them like a tree.
However, finding a file in such a tree quickly becomes difficult, and so we have invented other
principles to organize large volumes of information. The first is the use of hyperlinks. Such a
link allows us to indicate, in the first file, the name and location of a second file on the same
disk, or on another.
So, we can indicate in the first file that the second is found at the address “disk3:archives/2018/

34 Scientific Background

letter.txt,” which means its name is “letter.txt” and it is located in the 2018 folder, which is
found in the “archives” folder on a disk called “disk3.” This way, by using a browser to read
the first file, we just need to click on the link to access the second. This method of organizing
information using hyperlinks, across a network of disks and computers, is the idea behind the
Web (see above, page 30).
This organization of information in files, then folders, and finally by adding hyperlinks is in itself
insufficient when we need to store a lot of information, and there are other ways of organizing
large quantities of information. The first, which is suitable for structured information, is to
create a database. For example, an address book is a small database, made up of quintuplets
(5 pieces of data), each containing a surname, first name, address, telephone number and
email address. We can check this database by entering a request, in which we ask for the list of
quintuplets that contain for example a surname, or a first name, or even a telephone number.
For less structured information, we can leave an assortment of files on one or several disks and
let the research engine index them, then access these files by entering a request in the search
engine, which will then indicate where all files containing, for example a certain word, can be
found. This method of organizing information requires less work that structuring them in a
database, but yields poorer quality results. Looking for Mrs. Sellers’ phone number by entering
a request in a search engine leaves us at risk of coming across several texts containing the word
“seller” but are merely referring to the profession.

Converting and manipulating data7

Representing and organizing information enables them to be sent from one place to another
(which means they can travel through space), archive them to reproduce them later (which
means they can travel through time), but most importantly they can be converted. Several
algorithms enable specific information to be converted; for example, the multiplication
algorithm only applies to numbers. But three types of algorithms can be applied to any data:
compression, correction and encryption algorithms.

Compression

We saw earlier that a bright pink pixel is represented by 11111001100001010011110 and
a monochrome image of a million pink pixels can be obtained by aligning this block of 24
0s and 1s a million times. Instead of producing an extremely repetitive text of 24 million
characters, we can use a more concise representation that consists in indicating that the block
11111001100001010011110 must be repeated a million times. This is what we call compression.

Correction

Error correction algorithms find and sometimes correct an error in a piece of information,
for example an error introduced when the information was sent. A simple method, although
one which is costly in memory space, is to repeat each unit of information three times. For
example, 101 is converted into 111000111. If an error occurs, for example in the third triplet:
111000110, it is easy not only to find this error, but also correct it: as there is a majority of 1s

7 The “1,2,3...Code!” project offers two activities that deal with correction and encryption in Level 3
(Lesson 3.4 and 3.5, page 316 and 324).

35

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

in 110, the initial letter was most likely a 1. This correction algorithm only fails when two errors
occur in the same triplet.

Encryption

Lastly, encryption algorithms render a text unintelligible, except to the people who hold the
key. A simple, but not very effective method, was used by Julius Caesar to communicate with
his armies. It consisted in shifting each letter a set number of places forward or backward in
the alphabet. If we shift the letters three places in the phrase “VENI VIDI VICI”, we obtain “YGPL
YLPL YLEL”. To decrypt this message, we need to know the key. Here, it is the number of places
that we need to shift each letter back to find the original message. As there are only 23 letters
in Latin, there are only 23 keys possible, and so the message is not very hard to break (or
cryptanalyze), which means decrypting it without knowing the key.
Frequency analysis helps us find the key quickly: in a given language, all letters have a
known frequency (in English, the letter E is by far the most frequent letter; the letters
T, A, O, I, N, S, H, Rare quite frequent. At the other end of the spectrum, the letters Z,
Q, and X are hardly every used). Although in some specific cases, the most frequent
letter directly gives us the code key, it is often necessary to use a more comprehensive
histogram, which provides the frequencies of all letters. To figure out the key, we
just need to shift the histogram of the ciphered text until it best corresponds to the
histogram of the language considered. In the three examples below, the encryption
key remains the same (+3, the same as the one Julius Caesar used): even if there are
some minor discrepancies in the histograms, we can see a similar theme (even for
the extract of Georges Perec’s “A Void”, which he wrote without the letter E).

Ciphered message (key+3) Frequency analysis Deciphered message
D KXPDQ EHLQJ ZLOO

DOZDBV VXSSRVH WKDW,

WKH PRUH KXPDQ D

URERW LV, WKH PRUH

DGYDQFHG, FRPSOLFD-

WHG, DQG LQWHOOL-

JHQW KH ZLOO EH.

A human being
will always
suppose that,
the more human
a robot is, the
more advanced,
complicated, and
intelligent he will
be.
(The Robots of Dawn, I.
Asimov)

D JDS ZLOO BDZQ,

DFKLQJOB, GDB EB GDB,

LW ZLOO WXUQ LQWR

D FRORVVDO SLW, DQ

DEBVV ZLWKRXW IRX-

QGDWLRQ, D JUDGXDO

LQYDVLRQ RI ZRUGV

A gap will yawn,
achingly, day by
day, it will turn
into a colossal pit,
an abyss without
foundation, a
gradual invasion of
words…
(A Void, G. Perec)

There are other, more complex methods aside from a monoalphabetic substitution
cipher. During World War II, the German cipher Enigma (broken by A. Turing
and his team, see page 9) was also based on substitutions, but the encipher key

36 Scientific Background

changed regularly throughout the text. Historically, ciphering methods that were
not monoalphabetic substitutions were also used, in particular during wartime (for
example, the ADFGVX cipher during World War I).
Even better ciphering methods exist and are used every day to protect our credit card
numbers and other secrets that we only share with a small number of people.

37

S
c

ie
n

ti
fi

c
 B

a
c

k
g

ro
u

n
d

Computer science and social

challenges

Current scientific, economic and social challenges

The building of computers from the 1940s first and foremost transformed the
world of research. By enabling us to simulate complex physical phenomena, such as
climate changes, and by allowing us to process great quantities of data, such as the
human genome, computers have transformed the scientific method. Computers and
networks have simultaneously transformed how information circulates in companies.
The appearance of computers and networks in households transformed the way we

communicate in our private lives, with our friends and families.
We sometimes talk about the “digital world” to refer to the world we live in, characterized by
the omnipresence of computerized objects. They are everywhere, both visible (computers,
tablets, telephones, etc.) and invisible. In “embedded” computer systems (on planes, trains,
cars, pacemakers and household appliances, for example), computerized objects are increasingly
replacing mechanical or electrical systems.
Data access, through the Internet, is now extremely easy and fast. When data is digitized,
it takes up hardly any space at all, costs very little and can be instantly duplicated. As such,
computers are said to have perfect memory, able to collect enormous quantities of data and
conserve it for long periods. A simple exercise can give us an idea of this perfect memory: the
National Library of France holds 14 million volumes. Let’s say that every volume includes 500
pages and every page 2,000 characters (for this exercise, we will forget about images) and a
character is represented by a byte. The “size” of this library is therefore:

14,000,000 × 500 × 2,000 = 14,000,000,000,000 bytes

or 14 trillion bytes, which is 14 terabytes. But a 10 terabyte disk costs a few hundred euros. We
can therefore see how, thanks to digital technologies, the storage capacity of a small company
can rapidly exceed the size of the National Library of France (BNF).
From an economic standpoint, the computer industry is the star of the digital world, as it
produces all this equipment and software with high value added, alongside research in computer
science, as progress in theory goes hand in hand with technological progress. The digital world
destroys employment: carrying mail from one end of the Earth to another required armies of
mail carriers, which today are no longer necessary as mail is electronic. But it is also a source
of employment, because we have to develop new applications and new software incessantly to
keep up with rapidly changing needs. And finally, the third aspect of the economic importance
of computers, which we do not necessarily think of straight away, is professional training.
Everyone who handles computers and software, directly or indirectly (scientists, technicians,
salespersons, lawyers, teachers, architects, artists, etc.) require training, either initial training
or professional development. Professional training and guidance in computer science is of
increasing importance to businesses in the digital sector.
Despite these opportunities, it is evident that France and Europe are behind in terms of North
America and Asia. With the exception of a few niche markets (computer services, research,
robotics, etc.) our countries have for too long relegated computers to the rank of a tool, teaching
people how to use a particular program (which often becomes obsolete in a few years) rather
than teaching them computational thinking, an essential step that fosters the emergence of

38 Scientific Background

innovation. In recent years, we have seen efforts being made to address this delay, and a desire
to compensate for it, mainly through education.

Computers and ethics

The digital world offers unrivalled liberties to express oneself, access information, do training,
communicate and discuss. But wherever there are so many liberties, the risks and dangers are
great. Young people should be assisted, by being shown the boundaries of this new world.
Accessing free, instant information would have seemed like a utopia to the builders of the
Library of Alexandria. However, as we saw above, an inexpensive hard disk can contain almost
as much data as the National Library. But if there is a large quantity of data accessible, is it good
quality? How much can we rely on the information found on the Web? How can we maintain
a critical eye, check our sources (also accessible on the Internet), fact-check accounts? In the
classroom, we could, for example, have the students produce a web page so that they realize
the fact that they can write whatever they like on the Web, and therefore, if they can, anybody
else can (if they know how). The information that we find on the Web was placed there by
people like them.
Among the digitized information stored here and there, we can also find personal data. Our
social security information is stored on a server in France, and we cannot do anything about it.
Our bank details are stored, most likely on a server abroad, and we cannot do anything about
that either. However, our holiday photos are posted on Facebook, because we posted them
ourselves. In these three cases, we must be cautious: to what degree is our personal data secure?
Who can access this astronomical collection of personal information? Remember that computers
have absolute memory and that every activity can be stored and processed extremely quickly.
In 2008, Google launched the project “Google Flu”, collecting all searches with the keywords
“flu”, “fever”, etc., region by region. Google was able to describe in real time the progression
of the epidemic, and even able to predict it ahead of time. This type of information is of course
extremely valuable to health authorities, but also to pharmaceutical companies. Should this
type of information be made public, or could it be privately kept and sold to the highest bidder?
The flu example can be applied to many other topics, and since Google stores not just search
requests but also the IP address of the computer that sends it, it is not very difficult to convert
this seemingly anonymous data collecting into a form of espionage. And what about all the
applications that use and abuse geolocation, meaning we can be located to the closest meter?
All of these tools, which we use to make our lives easier, have hidden dangers. Every country
must therefore provide informed legislation that provides for the security of our personal
data, and also the right to be forgotten. This requires legal recognition of digital infractions,
research in computing cryptology and virology, security training, and more. This is already quite
a challenge at the national level, due to the lack of “digital common sense” and a thorough
knowledge of the risks involved, so it becomes even harder at the international level. Networks
are supranational, and laws change from one country to another. The sale of certain products
such as drugs are authorized in one country and not another. Similarly, the publication of
certain texts — defamatory, or blasphemous, for example — is authorized in some countries
and not others. Which laws govern the publication of a text: the laws of the country where the
computer that hosts the text is located, or the laws of the country where the computer used
to access the text is found?
Educating young people, but also adults (both citizens and legislators) is essential to ensure
that these new tools are used in an enlightened and respectful way.

39

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
P

re
s

e
n

ta
ti

o
n

 g
e

n
e

ra
l

L
e

v
e

l
1

Educational

Background

40 Educational Background

Making the distinction between

Computer Science and Information

and Communications Technology

(ICT) in Education

ICT in education: Important, but insufficient

Over the last three decades, the presence of computer science in education focused on teaching
students how to use tools such as computers, tablets and some commonly used programs such
as word processors, spreadsheets, web browsers, etc.
This user-centered approach is the approach taken by Information and Communications
Technology (ICT) in Education. It is useful because it enables children to acquire useful skills
in a number of school subjects and in everyday life, including researching information,
communicating and performing calculations.

Going further than simple usage:
Understanding computer science

However, a usage-centered approach simply prepares the student to use standard tools without
understanding the underlying principles of how they work. Students are not equipped to adapt
existing tools to their specific needs, nor to adapt themselves to the rapid development of these
tools, and they are not trained to invent and create new tools. These are the skills that they
need to become active rather than passive users of the digital world around them.
Computer science is not just a set of tools: it is a science, with its own history and concepts, an
overview of which can be found in the Scientific Background section, pages 3 - 38. As a science,
computer science is a fully-fledged educational subject just like physics or biology. Indeed, the
skills used in computer science, just like in the other sciences, help children work on their own,
take initiative, develop reasoning and creativity, etc.
The concepts behind computer science will remain long after the tools of today, and being
familiar with these concepts will be of permanent value to students throughout their
professional and private lives. As an example, we believe it is more educational to guide these
students to discover how images are encoded, through unplugged activities (manually pixelating
images) and plugged activities (creating small images on the computer) rather than simply
training them to manipulate digital images with complex software used like black boxes. These
programs could be put to better use if the students understood the underlying key ideas such
as information coding, pixels, resolution and compression.
The same is true for key ideas in algorithmics, programming and robotics. Understanding them
gives meaning to their use. Students that are taught these concepts will never look at their
image processing program, spreadsheet or any other software — even a household robot —
the same way.
To sum up, approaching computers as a science does not exclude ICT, but to stop at ICT appears
to us to be a very narrow view of computer science.

41

E
d

u
c

a
ti

o
n

a
l

B
a

c
k

g
ro

u
n

d

How should this teaching manual be

used?
A turnkey project...

This handbook offers a number of sequences for Levels 1, 2 and 3 (from pre-school to 6th grade)
that may be considered “ready-to-use”. The description of the sequences and lessons is specific
enough to allow a teacher, even with very little knowledge of computer science, to confidently
lead a class. For every lesson, the duration of the activity is given, alongside the necessary
equipment, initial problem, potential difficulties and the conclusions expected.
All the lessons were prepared by a multifunctional team of teachers, trainers and scientists. They
were tested in around thirty classes of varying profiles (rural/urban environments, privileged
and disadvantaged, with young and experienced teachers, multi-level classes, etc.).

...A project you can grasp, and adapt to your class!

Understanding the teaching project first requires reading up on it. It is therefore essential to
try out the activities — both plugged (requiring a computer, tablet or robot) and unplugged
— beforehand.
For each Level, there are several sequences that include plugged and unplugged activities, and
which sometimes provide alternatives depending on equipment available (computer, tablet or
robot). These sequences are based on an inquiry-based or a project method: it is possible that
the students deviate from the outline provided for the class. The teacher must, if necessary,
adapt their progression, and sometimes construct a new one, depending on the time they wish
to spend on the lesson and the students’ past experience.
In addition, this teaching guide — which covers the first three educational Levels — can be
broken down into further projects within each Level, or as a project to help students transition
from fourth to fifth grade, for example.
To do this, the conceptual scenarios suggested for each Level provide an overall perspective
of the key ideas being targeted, working in tandem with the lesson summaries which provide
an overview of the types of activities proposed.

Support options available in addition to this teaching

guide

To provide support when introducing computer science to elementary and middle schools, the
La main à la pâte foundation and its partners offer a variety of services to teachers and trainers:
•	 Training courses on demand:

o The La main à la pâte team hold training sessions at the request of the local educational
authorities (district authorities, boards of education, teacher training colleges, etc.). More
information is available on the project website (see page 342).

•	 Distance and blended learning
o The Class’Code consortium, which brings together several institutions and associations,

offers blended learning that combines a MOOC with classroom support on teaching
computer science (http://classcode.fr, in French).

o France IOI offers a variety of resources on its website (http://www.france-ioi.org/) as well
as online courses and distance support.

42 Educational Background

•	 Distance support
o The project website (see page 342) is designed as a teaching support tool, where teachers

can ask questions and provide feedback about their classroom activities and more.

How to teach computer science

Choosing lesson content

Teaching computer science is often understood as teaching computer programming. As we shall
see, programming is essential, but far from sufficient when teaching this subject.

•	 It is essential that students grasp the basics of programming early on.
Firstly, because it is practically impossible to understand what a program is without
having written a few yourself.
Secondly, because providing students with a basic grasp of programming is essential if
they are to have an active learning approach.
A student that does not know how to program and is trying to understand Caesar’s
Cipher, for example, will rapidly become passive. They might understand the principles
of this ciphering method, and that other people use it to encrypt and decrypt messages,
but they may not be able to do it themselves.
However, as soon as they understand the basics of programming language, they can
write a program themselves with a few lines, which enables them to encrypt and decrypt
messages and fully grasp this method through an active approach.

•	 However, being familiar with computer science does not stop at knowing how to
program, just like being familiar with electricity does not stop at knowing how to produce
an electrical circuit. It is therefore essential, when preparing a computer science lesson,
to balance the various objectives:
o Students must understand algorithms and the principles that enable them to create

algorithms, such as the binary search algorithm (in middle school).
o Students must understand what a programming language is, how different it is from

a natural language, the similarities with musical notation and with the language
with which we can express numbers with Arab or Roman numerals, etc.

o Students must understand that computer objects are data represented as symbols
(text, image, sound, etc.) and how this data can be compressed, encrypted,
corrected, etc.

o Students must understand that there are a vast number of machines that
process information: computers, telephones, robots, networks, etc. They must
also realize that beneath this diversity, there is a fundamental unity. All of these
machines process information by executing algorithms, expressed as programs in
a programming language.

The “1,2,3...Code!” project allows students to grasp the basics of the four key concepts in
computer science, mentioned above (machine, algorithm, language, information).
These concepts may be broken down into more basic key ideas, which can be seen in the
project’s conceptual scenarios.
On the page opposite is an example of a conceptual scenario, created for Level 3 (4th, 5th and
6th grades. The associated lessons are described on page 202).

43

E
d

u
c

a
ti

o
n

a
l

B
a

c
k

g
ro

u
n

d

The other
scenarios can be
seen on page 56
(Level 1) and page
108 (Level 2).

"1
,2

,3
...

co
de

!"
Co

nc
ep

tu
al

 S
ce

na
rio

 L
ev

el
 3

44 Educational Background

The importance of unplugged activities

This teaching guide offers a selection of unplugged or “disconnected” activities, referred to as
such as they require neither computer nor robot. There are several benefits to this approach.
To begin with, the activities proposed in this guide demonstrate that several significant key ideas
in computer science can easily be dealt with without a computer. This has practical advantages
because no costly equipment is required, thus all schools can offer them.
In addition, lessons using a machine require extra preparation time so that the teacher can
confront unexpected difficulties met in class (see pages 229 and thereafter for practical advice).

A few examples of disconnected activities in Levels 1, 2 and 3 address key ideas in language and algorithms, coding
information (text or image) and encryption.
There are several advantages for teachers starting a computer science project with unplugged activities. During
a plugged activity, the machine requires a degree of precision and attention to detail that gets in the way of
students understanding the major principles. In practice, some students also have trouble listing to instructions
or interacting with each other while using computers, as the screen attracts all their attention.8

8 On the topic of screen time, we recommend the excellent teaching project, “Screens, the brain and the
child”, published on the La main à la pâte website (https://www.fondation-lamap.org/en/international-
resources).

45

E
d

u
c

a
ti

o
n

a
l

B
a

c
k

g
ro

u
n

d

An unplugged computer science activity is closer to a typical class activity, which makes it less
surprising to students and teachers, simplifies working in groups or as a class, while avoiding
the minor technical issues that are unrelated to the ideas being studied.
These unplugged activities must however be complemented with plugged activities wherever
possible, because becoming proficient in computer skills is the ultimate goal of studying
computer science. Some students may feel frustrated by class activities described as computer
science, but which never call for computer use.

The educational benefit of robotics

Robotics provides a connection between the digital world and the physical world. It is one of
the primary fields of application of algorithmics and programming that is often more motivating
and reassuring that a simple computer screen. It is also an opportunity to introduce students
to a major aspect of modern technology, illustrating the incorporation of computer science
within physical objects.
Several studies have shown the highly positive impact of robotics on learning computer science
concepts, among others9. The impact is even greater when it is paired with active learning where
students experiment themselves, using a scientific inquiry-based method and a cooperative
approach (see page 47).
Learning the scientific method, discussion and debate are reinforced by the tangible aspect
of robotics. Students are motivated when handling a physical object, and this contributes to
greater comprehension. The cooperative aspect provoked by robotics activities also provides
students with a new space for expression. The possibility of testing programs on physical
objects, confirming or disproving hypotheses by providing them with tangible expression helps
students disassociate the notion of error from intellectual sanction and gives error a positive
status, seen as a step in the learning process.

9 See, for example “IniRobot: a pedagogical kit to initiate children to concepts of robotics and computer
science”, D. Roy et al., RIE 2015. https://hal.inria.fr/hal-01144435

46 Educational Background

Thymio II, a robot designed for education

This teaching guide includes a selection of robotics activities using the robot Thymio II. Why
this robot rather than another?

Thymio II is a small robot (11 x 11 x 5 cm) that is autonomous, mobile and robust, specifically
designed for education and particularly suitable from pre-school to middle school. Thymio
II uses open source equipment and software and has a rich, ergonomic user interface. It is
ready to use right out of the box, you do not need to assemble anything to make it work,
while the Lego spaces on top and on the wheels allow it to be transformed with extra pieces.
Input functions include five proximity sensors at the front, two at the back and two sensors
on the top that measure the floor’s brightness so that it can distinguish zones of different
colors (to follow a black line, for example). There are five capacitive touch buttons on the
top, a microphone, a triple-axis accelerometer to measure inclines and shocks, an infrared
sensor for an external remote controller and a thermometer. Output functions include two
engines to drive the wheels, 39 LEDs on the body, on top, underneath and on the sides,
allowing the robot to use a large variety of color combinations. Thymio also has a speaker, a
sound synthesizer and a micro SD slot to store music files, for example. All the sensors and
actuators mentioned above are accessed by programming.
The robot can be programmed as follows:

•	 By a highly intuitive visual programming interface accessible to beginners and even
children who cannot yet read;

•	 By a textual programming interface using simplified script language;
•	 By visual/textual programming software such as Scratch, Snap! and Blockly. For an

example of how to program Thymio using Scratch, click here: https://dm1r.inria.
fr/t/piloter-un-thymio-ii-avec-scratch/161

The combination of sturdiness, the variety of sensors and actuators, the user-friendly
interface, the possibility of entirely visual programming and programming with many other
languages make Thymio a robot that is remarkably suited to education.

Thymio II (left) and the VPL 1.4 programming environment (right).

47

E
d

u
c

a
ti

o
n

a
l

B
a

c
k

g
ro

u
n

d

Teaching computer science through

active learning: inquiry-based and

project-based learning
The multidisciplinary teaching project, “1,2,3...Code!” focuses on student activity through
questioning, experimenting, observing, trial and error, programming and discussion. This “active
learning” can take several slightly different forms, in particular the inquiry-based approach and
the project method.
Computer science, unlike the natural sciences (physics, biology, etc.), is not a study of a pre-
existing world, but rather a world created by man. While the inquiry-based approach applies
to both the study of natural objects and that of artificial objects, studying a “science of artificial
objects”, such as computer science, requires the learner to build these objects themselves. This
is why the inquiry-based approach must be used together with the project method.
Some lessons in the “1,2,3...Code!” project aim for concepts to be grasped by the students
and clearly follow an inquiry-based approach, as may be used when teaching the “traditional”
sciences. Other lessons focus specifically on skills development (which does not exclude the
comprehension of concepts). This is the case with programming lessons using Scratch. These
lessons follow the project method. Robotics lessons are in between. The robot can result in
the completion of a project, but can also be the subject of inquiry itself.

What is an inquiry-based approach?

The inquiry-based approach, which has been promoted by La main à la pâte for 20 years, is now
well established in primary schools. While acknowledging that a fixed model of this approach
is oversimplifying, we can nonetheless identify three general phases:

•	 Questioning, initiated by the teacher or the students, that gives rise to the forming of
theories;

•	 Research, which may be an experiment, an observation or documentary study;
•	 Structuring of knowledge which in turn leads to more questioning, more research, etc.

The following paragraphs provide a brief overview of the main phases of an inquiry-based
approach.

The questioning phase

The variety of answers to this questioning, comparisons and discrepancies will lead to a problem
that the students have to solve. The teacher’s role is to lead the discussion that will lead the
students to become aware of the problem and what they are trying to find out or demonstrate.
To do this, the teacher encourages communication among the students and guides them in
their thinking: “What would you say is the answer? What do you think of this?”

Forming theories

Using their experience or their knowledge, the students provide explanations that they believe
to be plausible: they are the students’ theories. Through inquiry and documentary research,

48 Educational Background

experimenting and/or modelling, students will be able to confirm whether their theories are
right or wrong. The research phase is set off by the need to test the credibility of a theory.

The students can form ideas or theories (what they think they know, what they think they
understand and can explain about a certain phenomenon) either individually or as a group:

•	 In writing, in the form of:
o a drawing or a figure with a key;
o a reasoned text;
o a list drawn up collectively;

•	 Orally, through a group debate among the students.

The research phase

During this phase, guided by the teacher, the student works alone or in a group to find solutions
to the problem raised. This involves testing the theories they have chosen. The teacher makes
sure that the research methods have been found by the students themselves, they must not
simply execute the teacher’s instructions. The teacher may help them if they get stuck, for
example by showing them the available materials.
When experimenting, modelling or direct observation are not possible, documentary research
and even interviewing an “expert” (which may be the teacher) will enable the students to prove
or disprove the theories previously produced.
The teaching guide “1,2,3...Code!” offers a large selection of inquiry-based methods. Here are
examples of each type:

•	 Experimenting: use pixel grids of varying cells widths to test the effect of image
resolution on the ability to recognize the object represented;

•	 Modelling: use a deck of cards to manipulate variables;
•	 Documentary research: study the history of computer science;
•	 Programming: create a video game; pilot a robot;
•	 Observations: disassemble a Thymio robot to see what it is made of.

Structuring knowledge

We have seen how questioning plays an essential part throughout the inquiry, whether this
involves stating the problem, interpreting the result of an experiment, or comparing opinions,
etc. Sometimes students need to go back and forth several times from questioning to research
before finding a solution and construct new knowledge.
During the collective oral phase, the class builds their shared knowledge. Discussion plays an
essential role. This group discussion must not be seen as a dialogue between the students and
teacher, but as a dialogue amongst the students, facilitated by the teacher.
The entire class contributes to produce a group lesson recapitulation, that they all agree on and
which summarizes what they have learned and understood. This conclusion also allows them to
get some perspective on the activity they have completed so that they can begin to generalize
and conceptualize. Precise vocabulary is key at this stage. The group lesson recapitulation is
often a written text, but can be added to with other forms of presentation such as graphics,
figures and timelines.
The class conclusion is a consensus reached, but this does not mean that it’s valid! We can all
be wrong! An often forgotten, but essential step in the inquiry-based method is comparing the

49

E
d

u
c

a
ti

o
n

a
l

B
a

c
k

g
ro

u
n

d

knowledge created in the class (our conclusions) with the common knowledge (the scientists’
knowledge). This comparison can be conducted using books, documents and even with the
teacher, who is also a guardian of the common knowledge.
In the teaching module, “1,2,3...Code!”, model conclusions are presented at the end of each
lesson. These are of course examples (based on the tests carried out in class) designed to guide
the teacher. It would be a shame to use these conclusions as they are. We recommend that
the teacher allow the students to draw up their own conclusions, based on the work they did
in class.

The teacher’s role in the inquiry-based method

While the students’ activity is essential and prioritized, the teacher plays a dual role that is key.
They are no longer simply the bearer of knowledge, but also the one that guides the students
on a path towards constructing knowledge by themselves and acquiring hard and soft skills.
To do this, the teacher relies on the knowledge they have on their students’ abilities as well as
the current level of class progression. They must be attentive to the general atmosphere, and
the pace of work for each student or group, provide support or spark the students’ reflection
when necessary, playing a moderator role (“What do you think?” “Do you agree with what was
said?”, etc.).The teacher decides if the class should move on to another activity, when refocusing
or during the generalization. For these reasons, the teacher is described as the class “tutor”.
The teacher also plays an intermediary role, establishing whether the “facts” observed are
indeed facts, and that they comply with the “official” science (the science of the experts). They
also decide, providing an explanation, whether the students’ suggestions can be accepted for
consideration or studied through experiments; lastly, as an expert or reference point, the teacher
bears witness on the scientific exactness of the results of the class’s work. For this reason, they
are the scientific “mediator” for the class.

Sciences and language proficiency

Oral and written communication is present throughout the project “1,2,3...Code!”. The science
notebook, in particular, is a precious tool, and their use is worth mentioning in detail.
Writing helps create distance, clarify and formulate thoughts, making them comprehensible to
all. Students that are new to the inquiry-based approach tend not to write naturally. This activity
therefore requires practice, which will be effective if the students understand its usefulness.
All writings, in all their many forms (drawing, figures, legends, descriptive or explanatory texts)
contribute to the learning process.

•	 Students write for themselves
Writing helps the students to act (select an experiment, make decisions, plan, anticipate
results), memorize (keep a record of observations, research, readings, look back on
a previous activity) and understand (organize, sort, structure, compare to previous
writings, reformulate collective writings).

•	 Students write for others
Writing lets the students share what they have understood, question the other students
and also people outside the class (other classes, family, etc.), explain what they have
done or understood, recapitulation, etc.

The science notebook can be organized in two parts: individual and collective.
Individual writings represent the student’s personal space, where they write down their initial

50 Educational Background

answers to the questions raised, describe the activities that enable them to answer these
questions, jot down what they anticipate, and draft their reports. These writings may be in the
form of texts, as well as figures, drawings and graphs. They serve as a driver of thinking and a
record of the action. As such, for the teacher they are a way of monitoring progress and the
personal progress of each child. It is important that the teacher does not play an authoritative
role in the student’s personal writings (by correcting mistakes, for example). They may, however,
help the child structure them gradually. Written texts that start out with little preparation
or structure will develop gradually with a description of the experiments (list of equipment,
procedure, figure or drawing), noting of results and their interpretation, and conclusions.
Collective writings are the result of the students comparing ideas and suggestions. They then
become “valid” writings and must respect spelling and syntax rules, and be enhanced with
specific vocabulary.

Evaluating concept acquisition

How can we evaluate the knowledge and skills acquired by the students throughout a project
such as this one? The answer to this question will primarily depend on how this evaluation
will be used. Is it a question of checking that the students have properly grasped a particular
key idea at the end of the project so that they can be graded, for example? Or, is it more about
collecting indicators of their level of comprehension throughout the inquiry approach, which
will help the teacher adapt their progression method?
The first case is referred to as summative evaluation. Considering the length of the teaching
module, the diversity of levels it is designed for and the variety of possible paths, we cannot
include a summative evaluation procedure here. However, examples of evaluations conducted
in the classroom are available on the project website (see page 342).
In order to be precise, reliable and useful, the evaluation of knowledge, skills and attitudes
can be complemented with regular observation of the student’s behavior, individual and group
work and the lesson recapitulation written in their experiment notebook.
This type of gradual evaluation allows the teacher to adapt the progression. If the teacher then
notices that some students are struggling with a key idea, they can spend a few minutes or an
entire lesson on another activity. This detour will allow the teacher to deal with the concept
that has been poorly grasped by some students in a different way, without boring the others.
The science notebook can be an excellent tool for formative evaluation, if the students use it
systematically for writing down their thoughts about the problem studied (ideas, conceptions,
projections, suggestions or theories), explain how they are going to solve the problem (the
experiment procedure, for example), report their results, explain what they have understood
individually, as a conclusion, before preparing and writing up a collective recapitulation with
the class.

What is the project method?

Project-based learning is a fully-fledged concept of active learning. First described in the early
20th century (initially by John Dewey, who also described inquiry-based learning), it was for a
long time confined to primary education before gradually spreading to secondary and higher
education.
The teaching guide “1,2,3...Code!” proposes two sequences that are fully based on this
approach; they are the sequences dedicated to programming in Scratch Junior, for Level 2 (see
page 143) or in Scratch, for Level 3 (see page 229).

51

E
d

u
c

a
ti

o
n

a
l

B
a

c
k

g
ro

u
n

d

Key aspects of PBL:

Students work on a complex task (a problem on which they conduct an investigation to solve
it; a question to which they must research the answer). The purpose of the project method in
“1,2,3...Code!” is to enable students to learn to program based on an open question, rather
than repetitive exercises (exercises are however necessary, at the beginning, to grasp the
programming environment);

•	 The task may be a practical, hands-on one, leading to the students producing something
tangible; or it may be conceptual, to justify a point of view (for example, a philosophy
workshop). In the case of the “1,2,3...Code!” project, the aim is to produce something
concrete: programming a video game.

•	 The period spent on this project in the classroom allows the students, as a group
or individually, to conduct a real investigation to answer the questions or solve the
challenges presented in the task. These questions are often open-ended, in that they do
not necessarily have a single, pre-established answer. During the project, students mostly
work in groups and their productions are personal creations rather than something
that already exists.

•	 The project is managed by the class group and not the teacher alone (who organizes
and directs but takes no decisions without the students);

•	 This complex task may be broken into more basic tasks where the students have a high
degree of independence and get actively involved.

There are many benefits to this approach:

The student is aware of what they are doing, and why they are doing it.
•	 Due to its practical nature, the project is particularly motivating. It is important that

task engages the students and that they make sense of their point of view, so that they
want to solve the problem. It is also important that they see it as manageable, and the
challenge is not beyond their reach. If it is too easy, it’s pointless; if it is too hard, they
become discouraged. The fact that they are living an “authentic” experience (they are
not just solving a school exercise, they’re creating a real video game) is a source of
great satisfaction.

•	 Learning the concepts is made easier by the fact that they are given context and have
meaning. The question, “how will we count the score or the number of lives in our video
game?” will lead students to the key idea of variable and the actions that go with it:
How do we create a variable? Why must we initialize it? How do we do that? How can
we change its value? How can we use this value in another part of the program (for
example, when the number of lives is zero, must the game end)? etc. A wide variety of
knowledge and skills are used throughout the project, without any arbitrary disciplinary
boundaries.

•	 Students change their perspective of error, which becomes an integral part of the
learning process. They are highly encouraged to proceed through trial and error. Indeed,
the project consists of programming a game: making a mistake does not matter, there
are no possible malfunctions (a program with errors will not damage the computer)
and the verdict is evident instantly. This is something the students will particularly
appreciate: they know straight away if what they suggested worked or not, and the
machine tells them, not the teacher nor classmate. The ease with which they try it out

52 Educational Background

and the lack of serious consequences of a mistake facilitates their independence and
decision-making. Independence is genuine in a programming project. There are often
several methods (some more elegant than others) to solve a problem.

•	 The project enables the students to use several cross-functional skills, such as decision-
making, planning, etc. Although it is possible to take a class on project management,
it is a field where experience is key. We learn how to successfully complete a project
by doing it.

•	 Collective intelligence is showcased. Cooperation is essential, because if the project is
well chosen, each student will, at some point, face a task that they are unable to solve
alone. Starting off the year with a project is an excellent way to create social ties in the
class and help students bond with an activity that they work on together. In addition,
because it has a concrete, “non-academic” objective, it helps bring students with
difficulties out of their shell, as they often quite withdrawn.

Avoid interruptions to the project

It can be very tempting for the teacher to take advantage of this project and the difficulties
encountered by students and gradually introduce more “traditional” lessons. This is sometimes
justified (helping students grasp a new key idea, conceptualize, and get some perspective) but
teachers must be careful, as these interruptions take away from the project’s value. They must
not occur too often. For this reason, in our programming sequence for Level 3, we propose some
activities that can help students grasp certain key ideas (variable, loop, logical operator, etc.),
by making sure that 1) they are optional and 2) they are practiced at another time, outside the
class time given to the project, so that they do not interrupt the project.

The teacher’s roles in project-based learning

Just like with inquiry-based learning, project-based learning places the focus on student activity.
This, however, does not mean the teacher does not have a role to play; quite the opposite!
The teacher ensures the project is scientifically and educationally beneficial, they help define
the project and ensures that its objectives are attainable by the students. They anticipate the
various steps and transform them into simplified tasks that enable the students to be even
more independent.
When necessary, the teacher supervises the distribution of tasks between the students.
The teacher is also a facilitator: they refocus the activity or the discussion on the problem to
be solved, reminds the class of the objective, and in principle tries not to express their opinion
on the students’ suggestions in order to encourage them. Similarly, they make sure that every
student participates in the project. In concrete terms, in our programming sequence for Level
3, we recommend that the teacher put the students into pairs to work, but with each pair
switching places every 10-15 minutes so that everyone gets their turn to control the keyboard
and mouse.
Finally, the teacher is a regulator of the class discussions, according each student time to
speak and helping them formulate the summary. They can also play a role of advisor/expert
by offering possible solutions or informing them of something they did not know if they find
themselves stuck.

53

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
O

v
e

rv
ie

w
L

e
v

e
l

1

Pedagogical module:
Class Activities

54 Pedagogical Module

Level 1 Activities
Overview

The activities module for Level 1 includes two sequences. The first is entirely unplugged (done
without a computer, tablet or robot and using only motor skills development materials) while
the second is a plugged activity (using robots).

•	 The first sequence (entirely unplugged) lets students invent and use a language to
program a sprite’s movements. Little by little, they enrich this language with new
instructions, tests and loops.

•	 The second sequence (entirely plugged) introduces students to the basics of robotics:
understanding that a robot can interact with its surroundings (by manipulating a Thymio
robot); see page 82 for more information).

A review lesson is available on page 96: it can be taught after Sequence 1 or Sequence 2.

Lesson summary
Sequence 1: Playing robot

Lesson Title Page Summary

Lesson 1 Moving an object
around a grid 58 Students learn how to give precise orders to a sprite to

control its movements around a grid.
Lesson 2 Challenge:

Programming a sprite’s
movements along
a route

63

By combining instructions from the previous lesson,
students design a program to create a complex route
for a sprite.

Lesson 3 Formative assessment:
Other routes, other
programs

65
The students write and interpret programs for other
routes.

Lesson 4 Conditional routes:
Treasure hunt 69 Students enrich their programming language with

conditional constructs (if–then statements).
Lesson 5 (Optional) A route of

any length: Loops 77

When routes become long or complex, students
begin to understand the importance of simplifying a
program: they discover that loops can be used to avoid
repetitions.

55

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
O

v
e

rv
ie

w
L

e
v

e
l

1

Sequence 2: Playing with robots

Lesson Title Page Summary

Lesson 1 Introduction to the
Thymio robot 82 Students are introduced to the Thymio robot and

learn how to manipulate it.
Lesson 2 Colors and behaviors 86 Students learn that Thymio has several modes and can

behave differently depending on the chosen mode.
Lesson 3 Thymio in Investigator

mode 89 Students discover Thymio’s turquoise mode and
prepare a route that Thymio can follow alone.

Lesson 4 Challenge: Get Thymio
through a maze 93 Students build a maze and must find all possible ways

to get Thymio through it.

56 Pedagogical Module

Conceptual scenario: “Level 1 computer science”
The key ideas covered during these two sequences for Level 1 can be organized as follows.

"1
,2

,3
...

co
de

!"
Co

nc
ep

tu
al

 S
ce

na
rio

 L
ev

el
 3

57

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
P

la
y

in
g

 r
o

b
o

t
L

e
v

e
l

1
-
 S

e
q

.1

 Sequence 1: Playing robot

Lesson Title Page Summary

Lesson 1 Moving an object
around a grid 58 Students learn how to give precise orders to a sprite to

control its movements around a grid.
Lesson 2 Challenge:

Programming a sprite’s
movements along
a route

63

By combining instructions from the previous lesson,
students design a program to create a complex route
for a sprite.

Lesson 3 Formative assessment:
Other routes, other
programs

65
The students write and interpret programs for other
routes.

Lesson 4 Conditional routes:
Treasure hunt 69 Students enrich their programming language with

conditional constructs (if–then statements).
Lesson 5 (Optional) A route of

any length: Loops 77

When routes become long or complex, students begin
to understand the importance of simplifying a pro-
gram: they discover that loops can be used to avoid
repetitions.

The class can then continue on with Sequence 2, page 81 (if robots are available) or the Review lesson,
page 96.

58 Pedagogical Module

Lesson 1 - Moving an object around a

grid

Summary Students learn how to give precise orders to a sprite to control its
movements around a grid.

Key ideas
 (see Conceptual scenario, page 56)

“Machines”
•	 The machines all around us simply follow “orders” (instructions)

“Languages”
•	 To command machines, we invent and use languages.
•	 A program is written in a language that both humans and

machines can understand.

“Algorithms”
• A program is a combination of instructions.

Inquiry-based methods Experimentation

Equipment For the class:
•	 A sprite
•	 A token
•	 A poster on A3 or A2 size paper with a 3x4 grid
•	 Three copies of Handout 1, page 62 (laminated, if desired)
•	 Magnets to keep everything on the whiteboard/chalkboard

Glossary Instruction, program
Duration 30 min

Foreword

This sequence is aimed at very young students. For students at the beginning of Level 1, the
activities will most often be done orally as a class, while students at the end of Level 1 can do
them in small groups, creating drawings of what they have learned. For older students, (Level
2), the activities can be done in groups with written conclusions. Several variations of the same
activities are suggested to accommodate these different age groups.
The goal is to move an object (the “sprite”) from a starting point to a destination point. Setting
the scene for this activity is very important to pique the students’ interest. Any object or
stuffed animal can be used as the sprite. To create a convincing reason why the sprite wants
to go to the destination point, another object is added (the “reward”). The teacher can choose
any reward depending on the choice of sprite; for example, a teddy bear will look for a pot of
honey, a pixie will go to pick a flower, etc.
Must this activity be done on a whiteboard or table? Both options are possible, but the “program
strip” (see following lessons) or instruction cards must fit on the same support. If the grid is hung
on the board with the magnetic sprite on it, the instruction cards must also be placed on the
board with magnets. The same applies if you are working on a table. While using arrows may
be easy for adults, this is not the case for children. For example, what does an upward-pointing
arrow on the board mean for a sprite lying flat on a table? Go up (in altitude)? Move away from
the student (confusing if the student is not directly in front of the grid)? Move towards the top
of the grid (which is what we expect)?

59

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 M

o
v

in
g

 a
n

 o
b

je
c

t
a

ro
u

n
d

 a
 g

ri
d

L
e

v
e

l
1

-
 S

e
q

.1

Can students play the sprites themselves in the classroom? It is possible, but care must be
taken to ensure that no errors or misconceptions are introduced. For practical reasons, it will
probably be difficult to place giant instruction cards on the ground where they can be read.
However, for the reasons mentioned above, it is inadvisable to hang them on the wall; students
will be able to read them, but they may not understand them. It is possible to invent a new
language for this activity: instructions can become “move one square towards the cafeteria,”
“move one square towards the playground,” etc. However, it may be difficult to apply the logic
to later lessons.
Where possible, we suggest using a sprite that does not need to face a particular direction.
Here, the focus is on instructions for movement (go right, go left, etc.) without complicating
matters with issues of directionality (turn a quarter turn to your right, etc.). However, if the
class chooses a sprite with front, back, right and left sides, face the sprite in a single direction
(e.g., front towards the top of the grid) and keep it facing this way at all times. This means that
a move to the right would correspond to a “step right” for the sprite, and not a turn to the right
followed by a step forward. The other option would be to face the sprite to the right, because
at this age, most children have become accustomed to “reading” from left to right. So, saying
“move forward” to go right would not pose any problems.

Starting the activity

The teacher presents the grid to the class and places the sprite on one of the squares. They tell
the class that they must give the sprite orders so it can move around the grid.

Experiment: Giving orders to the sprite

Orally: As a class, the students suggest orders to give to the sprite: “Walk,” “Go,” “Go over
there,” etc. There are numerous possibilities.

•	 Written: In groups, ask the students to find four orders (written or drawn) to control
any move on the grid.

First, place a reward on the grid that the sprite must collect. Place it two or three squares away
on the same row or same column as the sprite. If the students’ orders are vague (“Go!”), the
teacher asks, “Go where?” The same order (“go up”, for example) repeated two or three times
is sufficient. The formulation “Go three squares up” also works.

Teaching notes

•	 For younger students, the grid should be extremely simple: the squares can either be
aligned (the grid is one dimensional and students give instructions with a number of times
to go right or left) or placed in a cross configuration, where from the center square there is
only one square up, one square to the right, one square down and one square to the left.

60 Pedagogical Module

The reward can also be placed at a diagonal from the sprite (not for younger students). The students
may suggest the sprite move diagonally, but the teacher then explains that it cannot: it can only move
to one of the four squares that share a border with the square it is in. Students must combine two
orders, such as “go up” and “go right.”
The teacher then asks what four orders the sprite can obey. (If students suggest eight, remind them
that diagonal movements are not allowed.)

Group discussion

The teacher puts the class’s different suggestions of orders for the sprite up on the board. The class
discusses these suggestions and chooses the signals they want to use.
In the following lessons, we’re using a simple signaling system of arrows to indicate the direction the
sprite should move. The teacher can ask students to draw arrows on cards or use the arrows from
Handout 1, which will need to be cut out (and laminated, if desired).

The teacher introduces a new glossary term: the orders given to the sprite on the cards are “instructions.”
The teacher asks the students to explain what each card means. Each card corresponds to the movement
of the sprite from one square following the direction of the arrow.

Teaching notes

•	 This method of giving instruction is called “allocentric”: if the grid is placed in a particular
direction, the instructions have no effect on the direction the sprite is facing. In the class, these
instructions can be reworded, such as “move one square towards the whiteboard,” “move one
square towards the door,” etc. Later, in geography class, the four cardinal directions can be used.
For younger students, more context can be given for the grid by drawing a faraway environment
with various colors: “go towards the red mountain,” “go towards the blue sea,” “go towards
the green forest,” “go towards the yellow desert,” etc. Contextualizing the environment can
be useful, especially at the beginning for younger students, in helping them learn what arrows
mean. However, for ages five and up, we suggest using just arrows. This helps students learn
spatial awareness.

•	 For the sake of convenience, we will call the four cards above “instruction cards.”

61

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 M

o
v

in
g

 a
n

 o
b

je
c

t
a

ro
u

n
d

 a
 g

ri
d

L
e

v
e

l
1

-
 S

e
q

.1

Preschool class, Jessica Mazoyer (Paris).

Role play

The teacher hangs a long roll of blank paper above the grid on the board. This is the “program
strip” on which the instruction cards will be placed, side by side from left to right, to be followed.
The teacher adds the first instruction card to the program strip and places a magnetized token
on it: the class moves the sprite on the grid. The teacher then adds another instruction card
after the first one, moving the token onto this new card (the token indicates the instruction
being carried out). There is no need to remember the previous instructions or prepare the
following instructions ahead of time. The teacher then adds another instruction, followed by
another. The class reads and applies the instructions one by one, moving the token along the
program and the sprite on the grid.

Conclusion

The class summarizes together what they learned in this lesson:
•	 To move the sprite, you can give it simple orders, called “instructions.”
•	 By combining instructions, you can write a program.

Further study

The teacher places the sprite in the center of the grid. Half the class secretly hides the reward under
the grid, writing the program to find it from the square where the sprite is placed. The teacher asks
the other half of the class to find the reward by following the suggested program. The two groups then
switch roles.

62 Pedagogical Module

HANDOUT 1

Instruction cards for the sprite

63

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 2

 -
 C

h
a

ll
e

n
g

e
:

P
ro

g
ra

m
m

in
g

 a
 s

p
ri

te
's

..
.

L
e

v
e

l
1

-
 S

e
q

.1

Lesson 2 - Challenge: Programming a

sprite’s movements along a route

Summary By combining instructions from the previous lesson, students design a
program to create a complex route for a sprite.

Key ideas
 (see Conceptual scenario, page 56)

“Machines”
•	 The machines all around us simply follow “orders” (instructions)
•	 By combining several simple instructions, we can perform a

complex task
“Languages”

•	 To command machines, we invent and use languages
•	 A program is written in a language that both humans and

machines can understand.
“Algorithms”

•	 A program is a combination of instructions.

Inquiry-based methods Experimentation

Equipment For each group:
•	 A sprite
•	 A poster on A3 or A2 size paper with a 3x4 grid
•	 Several copies of the instruction cards from Handout 1 (copied or

drawn by the students during the previous lesson)

Glossary Program, language
Duration 30 min

Preparation

Before this lesson, the teacher should prepare or have the students prepare several copies
of the instruction cards from Handout 1 (in all, six copies of each instruction card will be
required for the entire sequence).

Teaching notes

•	 For preschool students, plan to have a set of instruction cards and a grid for each student
(or student pairs). Kindergarten students can begin to work in groups of four.

Starting the activity

As a class, review the conclusions from the previous lesson: By giving instructions, you can
move the sprite where you want around the grid. The teacher reminds the students what
they did at the end of the lesson: compile the instruction cards one after another, without
removing any of them. The teacher introduces the term “program”: a program is a set of
instructions.
The teacher presents the grid to the class and places the sprite on one of the corner squares.
They ask the class to create a program that will help the sprite go home at the opposite corner
of the grid (the sprite and the house are each on a grid square).

64 Pedagogical Module

Start

Destination

Experiment: Create a program for the sprite (in groups)

The students are split into small groups, each with its own sprite, a grid, a program strip and
enough instruction cards (four copies of each) to program the sprite’s movements. The teacher
asks them to find two different routes to guide the sprite home. The students combine their
instruction cards and test their routes to see if the program works.

On the left: Caroline Fayard’s kindergarten class; on the right: Jessica Mazoyer’s preschool class, Paris.

Group discussion
The teacher asks each group to present one of their programs. There are multiple
possibilities. For example:

At the end of the lesson, the various programs are shown on the board. The class concludes
that sometimes there are many ways to get the same result.
The teacher explains that these cards form a language that (in our game) can be understood
by both the sprite and people: it is a “programming language.”

Conclusion

The class summarizes together what they learned in this lesson:
•	 By combining several simple tasks, we can perform a complex task.
•	 A program is written in a language that the sprite and students can understand.

65

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 F

o
rm

a
ti

v
e

 a
s

s
e

s
s

m
e

n
t:

 O
th

e
r.

..
L

e
v

e
l

1
-
 S

e
q

.1

Lesson 3 - Formative assessment: Other

routes, other programs

Summary The students write and interpret programs for other routes.

Key ideas
 (see Conceptual scenario, page 56)

“Machines”
•	 The machines all around us simply follow “orders” (instructions)
•	 By combining several simple instructions, we can perform a

complex task

“Languages”
•	 To command machines, we invent and use languages
•	 A program is written in a language that both humans and

machines can understand.

“Algorithms”
•	 A program is a combination of instructions.

Inquiry-based methods

Equipment For the class:
•	 Handout 2 (a copy for the class or for each student, depending on

the chosen method)

For each student pair
•	 Handout 3

Glossary
Duration 30 min

Foreword

This formative assessment aims to verify that students have understood the key ideas covered
in previous lessons. It can be done orally as a class or individually. If doing it individually, plan to
have one copy of Handout 2 for each student as well as one copy of Handout 3 per student pair.

Exercise 1: Executing a program

The teacher reviews the key ideas covered previously: a program is a sequence of instructions
given to the sprite in a specific language. They suggest practicing on new programs and routes.
The teacher then passes out Handout 2 to the students. The exercise consists in executing
each of the programs step by step to find where the sprite finally ends up. The sprite should
start the exercise from the corner of the grid and continue on with each new program from
the square where it ended up. To set the scene for the exercise, the teacher can tell students
that the pixie/sprite must go to pick a flower (green route), then get water (blue route) before
going home (red route).

Teaching notes

•	 For preschool students, plan to have tokens to use as the sprite and another token
to keep track of where students are on the program strip. At this age, children have

66 Pedagogical Module

a hard time following both the sprite’s movement and the program instructions with
their finger.

•	 To make sure all students start from the right point at each step, it is best to correct any
errors for each route before starting the next one.

•	 The red route is the most difficult, because it asks students to go back from where they
came from, which can be problematic for certain students (they may wonder, “Why go
back?”). Do this activity last or use it as an optional exercise.

The answers for the first exercise are as follows:

The class takes the time to do each program step by step to check the final position.

Exercise 2: Writing a program

The teacher passes out Handout 3, which asks students to write a program that will take the
sprite to a destination point with an obstacle to avoid. As in the previous lesson, there are
several possible programs.

One example is:

If students find the exercise difficult, the teacher can have them do additional similar exercises
before moving on.

Further study

What students learn from this lesson (right, left, moving square by square) can be applied to
other activities. For example, board games use these types of instructions to move tokens along
a grid (e.g., Snakes and Ladders) or in motor skills development activities.

67

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 F

o
rm

a
ti

v
e

 a
s

s
e

s
s

m
e

n
t:

 O
th

e
r.

..
L

e
v

e
l

1
-
 S

e
q

.1

Instruction: From the upper left corner, the sprite must first follow the Green program. Color the
square of its final position green. From there, it must follow the Blue program. Color the square
of its final position blue. Lastly, starting from the blue position, it must follow the Red program.
Color the square of its final position red.

HANDOUT 2

One program, more programs (1/2)

68 Pedagogical Module

Instruction: Write a program that will take the sprite home. Be careful: it must not fall in the water!

Instruction: Write a program that will take the sprite home. Be careful: it must not fall in the water!

HANDOUT 3

One program, more programs (1/2)

69

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 C

o
n

d
it

io
n

a
l

ro
u

te
s

:
T

re
a

s
u

re
 h

u
n

t
L

e
v

e
l

1
-
 S

e
q

.1

Lesson 4 - Conditional routes: Treasure

hunt

Summary Students enrich their programming language with conditional constructs
(if–then statements).

Key ideas
 (see Conceptual scenario, page 56)

“Algorithms”
•	 A program is a combination of instructions.
•	 In a program, tests say which instruction should be done when a

condition is met.

Inquiry-based methods Experimentation

Equipment For the class:
•	 A sprite
•	 A poster on A3 or A2 size paper with a 3x4 grid
•	 Several copies of the instruction cards from Handout 1
•	 Treasure chest cards from Handout 4 and Handout 5
•	 New instruction cards: Handout 6 and two copies of Handout 7

Glossary Conditions, tests
Duration 45 min, can be split into two sessions.

Preparation

To fill in the grid used during the previous lessons, the teacher creates or has students create
tokens with treasure chests on them . The treasure chests can be green, red or neutral (gray).
On the back of the red chests, draw a monster. On the back of the green chests, draw a reward.
The corresponding cards are found on Handout 4 (cut on the solid lines and fold on the dotted
lines). After folding, the coins are hidden behind the green chests and the skulls are on the
back of the red chests.

Starting the activity

The teacher takes the grid from the first lesson and adds green and red treasure chests along
the routes (Handout 4). For example:

Start

Destination

The teacher presents the treasure chest cards and explains the game rules: If a sprite opens
a green chest, it gets a reward. If it opens a red chest, the monster inside will scare it and it
will have to go back to the starting point. The teacher asks the class a simple question: “Using

70 Pedagogical Module

the programming language we already used, will the sprite know
how to open the treasure chests?” No – it only knows how to move
around. The teacher then introduces a fifth programming language
glossary term: “Open the chest” (the corresponding card is found on
Handout 6). To emphasize that this card is essential to opening the
chest (without this instruction card, the chest cannot be opened),
the teacher suggests doing this first route as a class to help the sprite
safely gather all the rewards and make it to the final destination. The
teacher even gives students a program (which deliberately contains
an error):

Open the first green chest, then build suspense by moving by the first red chest without opening
it, but then forget to open the second green chest, and instead open the second red chest. This
demonstration will help students remember that simply being on the same square as a chest
does not mean it can be opened.

As a class, the students suggest how to correct the error:

Experiment: Collect all the rewards while avoiding the

monsters (as a class)

Following this practice exercise, the teacher traces out a new route, such as this one:

Start

 Destination

The teacher then asks the class to write a new program that will let the sprite safely collect
all the rewards and return home. The class finishes this example with a program like this
one:

71

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 C

o
n

d
it

io
n

a
l

ro
u

te
s

:
T

re
a

s
u

re
 h

u
n

t
L

e
v

e
l

1
-
 S

e
q

.1

 Preschool and kindergarten classes, Laurence Bensaid (Paris).

Experiment: Gathering all the coins along an unmarked

route

This time, the teacher shows the class a similar route, but with one difference: the treasure
chests are not red or green, but rather gray. Under each treasure chest card with a gray chest
is hidden a colored treasure chest card (green or red), which indicates whether the chest
contains coins or a monster. “The sprite already knows where the treasure chests are, but
does not know what color they are. What does it do?”

Start

Destination

The class discusses the fact that the sprite must go to all the squares with
a chest, but it needs to check whether the chest is red or green before

opening it.

The class begins by trying to verbalize the necessary instruction.

IF the chest is green THEN it must be opened.

Scientific notes:

•	 The teacher can explain that if the condition is not met, nothing
needs to be done: IF the chest is green, THEN it must be opened,
OTHERWISE it is not opened.

•	 When the sprite is on the same square as a red chest, it still obeys
this instruction and does not open the chest. This is neither an
error nor disobedience.

72 Pedagogical Module

The teacher then suggests a new instruction card (found on Handout 7). This card is a test; it
includes a condition (here, “Is the chest green?”) and the instruction (here, “Open the chest”)
to follow if the condition is met.
During the exercise, when the sprite asks the question, the teacher removes the gray treasure
chest card and reveals the chest’s real color.
The class should improve the previous program with this new instruction to help the sprite
safely collect all the coins and arrive at the destination.
The final program created by the class may be similar to this one:

The instruction appears four times, once for each chest, because it is impossible to know ahead
of time where the green chests are.

Conclusion

The class summarizes together what they learned in this lesson:
•	 In a program, tests say which instruction should be done when a condition is met.

Further study

Suggest other routes, asking how many rewards the sprite will collect using the program.
•	 For kindergarten classes: You can ask the students to create an “OTHERWISE” card: for

example, “IF the chest in green, THEN the sprite opens it to get the reward, OTHERWISE
it buries the chest so its friends will not accidentally open it.”

73

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 C

o
n

d
it

io
n

a
l

ro
u

te
s

:
T

re
a

s
u

re
 h

u
n

t
L

e
v

e
l

1
-
 S

e
q

.1

HANDOUT 4

The sprite's treasure chests: colored version

HANDOUT 5

Sprite's instructions: Conditional cards

74

HANDOUT 6

Sprite's instructions: Conditional cards

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 C

o
n

d
it

io
n

a
l

ro
u

te
s

:
T

re
a

s
u

re
 h

u
n

t
L

e
v

e
l

1
-
 S

e
q

.1

75

76 Pedagogical Module

Summary When routes become long or complex, students begin to understand the
importance of simplifying a program: they discover that loops can be used
to avoid repetitions.

Key ideas
 (see Conceptual scenario, page 56)

“Algorithms”
•	 A program is a combination of instructions.
•	 In a program, loops are used to repeat the same instruction

several times.
Inquiry-based methods Experimentation
Equipment For the class:

•	 A sprite
•	 A poster on A3 or A2 size paper with a 6x5 grid
•	 Instruction cards: Handout 1, Handout 7 (previous lessons)
•	 Treasure chest cards: Handout 4, Handout 5 (previous lessons)

Glossary Loop
Duration 30 min

The teacher shows the class a new route, which is bigger than the previous ones (six
columns by five lines) and without any treasure chests.

They ask the students to create a program that will take the sprite to the “destination” square.
This simple exercise is very quick. Among the students’ suggestions, the “simplest” ones are
those using straight lines rather than routes with stair-stepping or detours.

Route example:

Although simple, this program requires numerous cards: the teacher asks the students how
they might be able to shorten the program. If necessary, they can tell students that there are
a lot of repetitions. Rather than using the same card several times, is there a way to show on
the card that the instruction will be repeated several times? The class makes and discusses
various suggestions.

3

HANDOUT 7

Sprite's instructions: Conditional cards

77

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 5

 -
 (

O
p

ti
o

n
a

l)
 A

 r
o

u
te

 o
f

a
n

y
 l

e
n

g
th

:
L

o
o

p
s

L
e

v
e

l
1

-
S

e
q

.1

Lesson 5 - (Optional) A route of any

length: Loops

Summary When routes become long or complex, students begin to understand the
importance of simplifying a program: they discover that loops can be used
to avoid repetitions.

Key ideas
 (see Conceptual scenario, page 56)

“Algorithms”
•	 A program is a combination of instructions.
•	 In a program, loops are used to repeat the same instruction

several times.
Inquiry-based methods Experimentation
Equipment For the class:

•	 A sprite
•	 A poster on A3 or A2 size paper with a 6x5 grid
•	 Instruction cards: Handout 1, Handout 7 (previous lessons)
•	 Treasure chest cards: Handout 4, Handout 5 (previous lessons)

Glossary Loop
Duration 30 min

Starting the activity

The teacher shows the class a new route, which is bigger than the previous ones (six
columns by five lines) and without any treasure chests.

They ask the students to create a program that will take the sprite to the “destination” square.
This simple exercise is very quick. Among the students’ suggestions, the “simplest” ones are
those using straight lines rather than routes with stair-stepping or detours.

Route example:

Although simple, this program requires numerous cards: the teacher asks the students how
they might be able to shorten the program. If necessary, they can tell students that there are
a lot of repetitions. Rather than using the same card several times, is there a way to show on
the card that the instruction will be repeated several times? The class makes and discusses
various suggestions.

3

78 Pedagogical Module

We suggest writing down on the card the number of times it will be applied. This type of
notation has the advantage of being compatible with the design of the loops in the Scratch
Junior software, which will be used in Level 2 (see page 142).

This card means “Move three squares to the right”

The teacher explains the key idea of “loop,” which is the repetition of a single instruction to
simplify the writing (and understanding) of a program.

The class uses loops to simplify the previous program, which becomes:

The class then looks to see which of the previous programs they suggested can be simplified
using loops.

Exercise and review

The teacher shows students the same route on which they have placed treasure chests:

The aim is to create a program to take the sprite to the destination square while collecting all
the rewards (using tests, as in the previous lesson).

Depending on students’ ages, this exercise can be done in small groups or as a class.

One possible solution is:

3

5 4

79

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 5

 -
 (

O
p

ti
o

n
a

l)
 A

 r
o

u
te

 o
f

a
n

y
 l

e
n

g
th

:
L

o
o

p
s

L
e

v
e

l
1

-
S

e
q

.1

We suggest writing down on the card the number of times it will be applied. This type of
notation has the advantage of being compatible with the design of the loops in the Scratch
Junior software, which will be used in Level 2 (see page 142).

This card means “Move three squares to the right”

The teacher explains the key idea of “loop,” which is the repetition of a single instruction to
simplify the writing (and understanding) of a program.

The class uses loops to simplify the previous program, which becomes:

The class then looks to see which of the previous programs they suggested can be simplified
using loops.

The teacher shows students the same route on which they have placed treasure chests:

The aim is to create a program to take the sprite to the destination square while collecting all
the rewards (using tests, as in the previous lesson).

Depending on students’ ages, this exercise can be done in small groups or as a class.

One possible solution is:

Kindergarten class, Caroline Fayard (Paris).

Conclusion

The class summarizes together what they learned in this lesson:
• In a program, loops are used to repeat the same instruction several times.

Further study (Level 2)

Older students can continue working on loops, especially to help them understand that
several instructions can be included in a single loop. You can ask students to write a program
using the fewest instruction cards possible to reach the destination, resulting in a route such
as the one that follows.

The teacher hangs up the following route:
Start

The class begins by writing a program to describe the route. After learning about loops, the
students try to apply this idea to their route. They need to figure out how to make a loop with
two instruction cards. The teacher can suggest the following:

80 Pedagogical Module

This notation is also compatible with the instructions used in the Scratch Junior language.

Kindergarten class, Caroline Fayard (Paris)

If the class has robots, it can continue with the next sequence. If not, wrap up this sequence
with the Review lesson, page 96.

5

81

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
P

la
y

in
g

 w
it

h
 r

o
b

o
t

L
e

v
e

l
1

-
 S

e
q

.2

 Sequence 2: Playing with robots

Introductory note: Robotics for preschoolers and

kindergarteners
•	 Working with robots is extremely beneficial, not only to teach basic computer concepts

(algorithms, machines, programs, etc.) and robotics (sensors, actuators, interactions
with surroundings, etc.) but to help children develop cognitive and language skills as
well. Additionally, manipulating a physical object is a strong motivator for students.
However, despite the appeal, not all classes have access to robotics technology due to
equipment costs (especially given that several robots are needed for each class).

•	 There are numerous educational robots, but few can be adapted to suit the needs of
preschools, such as options that are affordable, sturdy and easy to use with a range of
behaviors and interactions, etc. We have based our sequence on the Thymio 2 robot
(which we simply call Thymio) as it has all these features. Of course, other options are
available (more basic, such as Bee-Bot, or more sophisticated and expensive, such as
Nao). If robots other than Thymio are used, the sequence will need to be adjusted
accordingly.10

Lesson Title Page Summary

Lesson 1 Introduction to the
Thymio robot

82 Students are introduced to the Thymio robot and
learn how to manipulate it.

Lesson 2 Colors and behaviors 86 Students learn that Thymio has several modes and can
behave differently depending on the chosen mode.

Lesson 3 Thymio in Investigator
mode 89 Students discover Thymio’s turquoise mode and

prepare a route that Thymio can follow alone.
Lesson 4 Challenge: Get Thymio

through a maze 93 Students build a maze and must find all possible ways
to get Thymio through it.

The class can then go to the Review lesson on page 96.

10 In 2016, a Thymio 2 robot cost about €150. We suggest working with at least two robots in class (and
more if possible). A list of retailers that sell Thymio is available here: https://www.thymio.org/en:thy-
miobuy

82 Pedagogical Module

Lesson 1 - Introduction to the Thymio

robot

Summary Students are introduced to the Thymio robot and learn how to manipulate
it.

Key ideas
 (see Conceptual scenario, page 56)

“Robot”
•	 A robot can perform actions: move, make a sound, produce light,

etc.

Inquiry-based methods Observation, experimentation

Equipment For each group:
•	 A Thymio robot, with its batteries charged

For each student:
•	 2 sheets of A4 paper

For the teacher:
•	 Handout 8, page 85
•	 A2 size poster or flip chart

Glossary Thymio
Duration Two 30-minute time slots

Starting the activity

The teacher asks the entire class to explain what a “robot” is. To help them verbalize an answer,
the teacher hands out a sheet of A4 paper to each student and tells them to draw a robot.
After 15 minutes, students hang the drawings on the board and discuss them. The teacher also
prepares the poster that will be used to summarize the robot characteristics.

Kindergarten class, Anna Halatchev (Paris)

83

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 I

n
tr

o
d

u
c

ti
o

n
 t

o
 t

h
e

 T
h

y
m

io
 r

o
b

o
t

L
e

v
e

l
1

-
 S

e
q

.2

The first observation is the general robot shape. The robots students imagine are nearly always
humanoid and angular with lots of lights and buttons. They are often huge, move around on
legs, wheels or track rollers, and can be grouped into two categories:

•	 Warrior robots: Armed with blades, guns, canons, crossbows and lasers, they destroy
everything in their path.

•	 Utility robots: They clean, travel, dance, repair cars, cook, etc.
The teacher gradually fills in the poster: robot uses, means of locomotion, shapes, sizes, tools,
etc. The poster will be used again at the end of the sequence to better define what a robot is.

Experiment: Discovering Thymio (in groups)

This second part of the lesson can be done right after the previous one or saved for another
day depending on students’ concentration levels.
The teacher splits the class into several groups and has them stand or sit around large flat
surfaces (on the classroom floor or large tables, etc.). They give each group a robot (turned
off). The teacher presents the Thymio robot and asks the students to explore it.
The teacher gives them a few minutes to familiarize themselves with the robot on their own.
They will quickly figure out that it must be turned on to work (if they do not, ask them to press
the middle button for three seconds) and that it can move around, make music and change color.

Group discussion

At the end of this activity, the students explain how they turned Thymio on. They also explain
how, using the arrows on the top of the cover, they could make it change color and play music.
They describe how they were able to turn it off.

Teaching notes

•	 Handout 8 (page 85) is for the teacher: It explains the commands, sensors and actuators
for Thymio and the different operating modes.

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 Thymio turns on using the middle button
•	 Thymio can change color
•	 Thymio can make sounds
On a sheet of A4 paper, the students draw their Thymio.

84 Pedagogical Module

Kindergarten class, Caroline Fayard (Paris)

Teaching notes

•	 The drawing of Thymio may be the first observational drawing students have ever done.
Some may find it difficult to decide which angle to start drawing from, while others may
start drawing right away. Some of the drawings may be very detailed. Drawing helps
students learn to observe things carefully: How are the buttons positioned? How can
the shape be described in words? and so on. This exercise has students use a number
of skills.

85

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 I

n
tr

o
d

u
c

ti
o

n
 t

o
 t

h
e

 T
h

y
m

io
 r

o
b

o
t

L
e

v
e

l
1

-
 S

e
q

.2

Kindergarten class, Anna Halatchev (Paris)

To turn Thymio on, touch the round button that lies in the center of the four arrow buttons
until the robot makes a sound and turns green. It takes just a few seconds.

To turn Thymio off, proceed as for switching it on. Touch the round button until the robot
no longer shows any color. It will also make a sound.
(Source: https://www.thymio.org/en:thymiostarting)

Thymio is pre-programmed with six behaviors. These behaviors are always available on the
robot. To choose Thymio’s behavior, simply start the robot and select a color using the arrow
buttons, then press the middle button to confirm. When the behavior is active, the middle
button lets you go back to the behavior selection menu.

Mode Color Behavior

Friendly Green Thymio follows obstacles that move in front of it.
Explorer Yellow Thymio randomly explores its surroundings and

avoids obstacles.
Fearful Red Thymio avoids obstacles in front of or behind it.

Investigator Turquoise Thymio follows a dark track against a light
background drawn on the floor.

Obedient Purple Thymio is manually oriented using the arrows on the
cover.

Attentive Blue Thymio reacts to sounds: depending on the number
of hand claps it hears, it can turn, move forward,
stop, move in a circle.

HANDOUT 8

About Thymio

86 Pedagogical Module

Lesson 2 - Colors and behaviors

Summary Students learn that Thymio has several modes and can behave differently
depending on the chosen mode.

Key ideas
 (see Conceptual scenario, page 56)

“Robot”
•	 A robot can perform actions: move, make a sound, produce light,

etc.
•	 A robot has sensors that let it perceive its surroundings.

Inquiry-based methods Observation, experimentation

Equipment For each group:
•	 A Thymio, with its batteries charged.

For each student:
•	 The Thymio drawing from the previous lesson.

For the teacher:
•	 Handout 8, page 85 (used in the previous lesson)
•	 An A3 or A2 size flip chart.

Glossary Sensor, wheels
Duration 30 min

Preparation

Just before the lesson, the teacher turns the Thymio robots on and sets them to different modes
(green, yellow, red and purple). Note that it is best to select the yellow mode at the last minute,
otherwise it will move around the table on its own.

Starting the activity

Each group tries to understand how Thymio is behaving when displaying a particular color. The
teacher starts off the experiment by turning on the Thymio robots that are to be in yellow mode.

Experiment: Which behaviors correspond to which

colors? (in groups)

Aside from the yellow mode, the other modes do not immediately start Thymio moving. If the
students do not think of it on their own, suggest they place obstacles near the robot (a hand,
an object, etc.).
When the Thymio robots begin to move (green and red modes), ask the students to figure out
which part of its body allows the robot to detect obstacles and have them identify the distance
sensors. They can make the connection between the robot’s actions and the sensor indicators
that light up. For example, in green mode, if a sensor detects an object, the indicator light turns

87

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 2

 -
 C

o
lo

rs
 a

n
d

 b
e

h
a

v
io

rs
L

e
v

e
l

1
-
 S

e
q

.2

red and Thymio begins following the object. The teacher can then officially introduce the term
“sensor” to talk about these components.

The purple mode will likely be the most difficult to understand. The teacher can tell the students
that the on/off button is also a sensor. The arrows could also be considered sensors.

Teaching notes

•	 For a smoother observation process, a few rules should be established from the start:
o One student handles Thymio at a time
o After each manipulation, leave a few minutes to observe and understand the

effects
o Leave some space around Thymio so it can move (students quickly tend to sit

very closely around it, which overstimulates the sensors and does not give it
enough space to move around)

Group discussion

Each group tells the rest of the class about its robot and explains its behavior by showing which
Thymio sensors interacted with its surroundings (obstacle detection or pushing buttons):

•	 Yellow Thymio “moves on its own” by “avoiding obstacles.”
•	 Green Thymio tends to follow objects, like a hand, placed in front of it.
•	 Red Thymio moves away from objects placed in front of, behind or beside it.
•	 Purple Thymio moves forward or turns depending on the arrows that are pressed.

As a group, try to give each behavior a name (e.g., friendly, fearful, explorer, obedient). The
teacher concludes the group discussion by asking how Thymio moves. The students will quickly
point out the wheels.

Kindergarten class,
Caroline Fayard (Paris)

88 Pedagogical Module

Scientific notes:

•	 Sensors are components that let a robot perceive its surroundings (including a person’s
actions).

•	 The actuators are components that let the robot interact with its surroundings (here,
by moving).

Exercise: Playing with the other modes

The students swap robots to explore the other modes.

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 Thymio can be in different modes, each indicated by a different color, which determine

the robot’s behavior.

On their sheet of A4 paper, the students complete their drawing of Thymio, labeling the sensors
and wheels.

On the board, the teacher describes the four initial modes, labeling each with a color, the
adjective used to describe the mode (and/or an icon chosen by the class to designate the
behavior, such as smileys).

A fifth line should be prepared ahead of time to describe the turquoise mode, which will be
covered in the next lesson. This experiment will require some advanced preparation by the
teacher, who will likely want to prepare the routes for Thymio to follow (see next page).

Although Handout 8 describes six behaviors, only five of them will be explored by the students.
We do not recommend working in blue mode. Because Thymio reacts to sounds, the classroom
can quickly become chaotic.

89

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 T

h
y

m
io

 i
n

 I
n

v
e

s
ti

g
a

to
r

m
o

d
e

L
e

v
e

l
1

-
 S

e
q

.2

Lesson 3 - Thymio in
Investigator mode

Summary Students discover Thymio’s turquoise mode and prepare a route that
Thymio can follow alone.

Key ideas
 (see Conceptual scenario, page 56)

“Robot”
•	 A robot can perform actions: move, make a sound, produce

light, etc.
•	 A robot has sensors that let it perceive its surroundings.

Inquiry-based methods Observation, experimentation

Equipment For each group:
•	 A Thymio, with its batteries charged
•	 Large sheets of white drawing paper, black paint, small paint

rollers (4 cm wide)

For the teacher:
•	 Handout 8, page 85 (used in Lesson 2.1)
•	 The A3 poster created during the previous lesson

Glossary Sensor, routes
Duration 30 min

Foreword

There are two different ways to approach this lesson.
•	 The first (described here) is for the teacher to prepare a route that Thymio will be able

to follow. In half an hour, the students can both explore the turquoise mode and quickly
draw conclusions about the concept of “sensor” while describing the types of routes
that work well.

•	 A second option (the lesson variation) will take longer (one to two hours, done partly
during art class) because students will have to learn about the sensors and explore how
sensitive they are by creating routes in various materials that work well (or not). They
will analyze the shape as well as the color and materials of the routes Thymio sees.

Preparation

The day before the lesson, the teacher can prepare the black route sections (straight, curved,
etc.) using a paint roller and poster or acrylic paint. The route should be around 4 cm wide. Be
sure to try it out ahead of time with the robot to make sure it works! Just before the lesson,
the teacher turns on the Thymio robots and places them in turquoise mode.

90 Pedagogical Module

Starting the activity

Each group observes that Thymio turns around and around when placed on the table. The
teacher explains that Thymio is looking for a route and the students are going to give it one.

Experiment: Drawing routes for turquoise Thymio

(in groups)

Students will glue route sections provided by the teacher onto their pieces of drawing paper.
The routes can be straight, curved, open or closed. A track in a figure-8 shape is simple and
provides an interesting experience.
When the route is ready, students can place their Thymio (still in turquoise mode) on their
paper near the route. They will notice that the robot follows the route all on its own.

Kindergarten class, Caroline Fayard, (Paris). Note that rough textured paper is not ideal
for this type of route (see the list of suitable materials below).

Group discussion

Each group shows the class its route and describes how Thymio followed it. The teacher writes
down the features of the routes that worked well on the board:

•	 Continuous routes (at each break between two segments, Thymio turns back the way
it came)

•	 Gentle curves (Thymio has trouble managing hairpin turns)

Whether the route is open or closed or features intersections, Thymio is able to follow it: It
either turns around at the end of an open route, continues along closed routes or generally
goes straight at an intersection.

91

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 T

h
y

m
io

 i
n

 I
n

v
e

s
ti

g
a

to
r

m
o

d
e

L
e

v
e

l
1

-
 S

e
q

.2

The teacher mentions the term “sensor” again so that students understand how the robot was
able to “see” the route. When students lift their Thymio up, they can see two sensors under
the frame at the front of the robot.

The teacher asks students how they know these are the sensors that let Thymio “see” the
route. The class comes to a consensus with a short experiment: cover the sensors with a piece
of paper taped to the underside of the robot. Now, Thymio cannot “see” any route, which
confirms the initial hypothesis.

Scientific notes:

•	 The two sensors on the robot’s frame detect the presence or lack of a route (black or
another dark color versus white or another light color). For example, if the right sensor
detects white but the left sensor detects black, Thymio will turn left to follow the route,
which is certain to be a left turn. If both sensors detect white, Thymio turns around in a
circle until it finds a route. If both sensors detect black, Thymio moves straight forward,
which will also happen if both sensors are blinded by sticky tack.

As a class, students describe this behavior with an adjective (e.g., investigator, because it
investigates a route, older children may suggest explorer). Avoid using the term follower,
because the green friendly mode can follow a hand placed in front of it.

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 Turquoise Thymio can follow routes drawn in black on a white background.

On the board, the teacher completes the poster from the previous lesson, adding a description
of the fifth mode and labeling it with the color, the adjective used to describe it (and/or an icon
chosen by the class to designate the behavior, such as a smiley).

Further study
•	 Kindergarten students may want to try out other routes with other shapes to see how

turquoise Thymio reacts to more complex routes.

Variation

In this variation, the teacher lets the students create their own routes. This takes time (i.e., letting the
paint dry) and results can vary. Here are a few things to keep in mind with regards to the materials and
shapes children can use:

•	 Materials:
o What works: black Bristol board, ink, acrylic, poster paint, garbage bags
o What does not work: textured paper, tissue paper, felt

•	 Shapes that work:
o Continuous routes
o Gentle turns
o A smooth surface (Thymio’s movement can be hampered by irregularities in texture,

glue blobs, folds, etc.)

92 Pedagogical Module

The routes on the right (in poster/acrylic paint) worked well, but Thymio was unable to detect the one on the
left (textured paper). The route in pencil (graphite, in the middle) is being tested. Kindergarten class, Caroline
Fayard (Paris).

After trying out different materials, kindergarten or Level 2 students can extend their study by
creating a black route on a black background. A route on Bristol board will be seen by Thymio
even if glued onto a black textured background.

93

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 G

e
t

T
h

y
m

io
 t

h
ro

u
g

h
 a

 m
a

z
e

L
e

v
e

l
1

-
 S

e
q

.2

Lesson 4 - Challenge: Get

Thymio through a maze
Summary Students build a maze and must find all possible ways to get Thymio

through it.
Key ideas
 (see Conceptual scenario, page 56)

“Robot”
•	 A robot is a machine that can interact with its surroundings.
•	 A robot can perform actions: move, make a sound, produce light,

etc.
•	 A robot has sensors that let it perceive its surroundings.

Inquiry-based methods Observation, experimentation

Equipment For each group:
•	 A Thymio, with its batteries charged

For the class:
•	 Large sheets of white drawing paper, black paint, small paint

rollers (4 cm wide)
•	 Black fabric ribbons (4 cm wide): These should be tested as results

can vary depending on the fabric (cotton, silk and wool work)
•	 Objects that can be easily moved around and used as obstacles for

Thymio (cubes, books, etc.)

For the teacher:
•	 Handout 8, page 85 (used in Lesson 2.1)
•	 The poster created during the previous lessons
•	 A stopwatch

Glossary Sensor, wheel, route, maze
Duration 30 min

Preparation

Before the lesson, the teacher sets up a maze using cubes, books, etc. on the classroom floor.
Obstacles should be between 5 and 6 cm high to be detected properly by the side sensors and
heavy enough that Thymio will not move them by accident if it runs into them. The path should
be around 20 cm wide and the turns not too sharp. The maze can be open (with an entrance
and an exit) or closed. The teacher places the Thymio robots (turned off) on the tables for
each group.

Starting the activity

The teacher presents the maze to the class. Their challenge is to have Thymio run the maze.
(For open mazes, place Thymio at the entrance and have it go out the exit; for closed mazes,
have the robot do a complete round through the maze.) Each group can suggest a method and
apply it to see if their strategy works.

94 Pedagogical Module

Experiment: Guiding Thymio through a maze (in groups)

If necessary, the teacher can bring out the poster and describe the five behaviors seen during
the previous lessons:

•	 Can you use the green mode? What do you do? (Yes, you can: You have to guide Thymio
step by step around the maze, using your hand or an object placed just in front of the
robot.)

•	 Can you use the red mode? (Same as above, but you have to push it)
•	 Can you use the yellow mode? (Yes, the robot explores and avoids hitting the maze

walls to eventually reach the exit.)
•	 Can you use the purple mode? (Yes, you have to guide it step by step using the forward,

right and left buttons, but you have to be quick and precise to do it correctly.)
•	 Can you use the turquoise mode? (Yes, you have to draw a black route or place a black

ribbon inside the maze.)

Teaching notes

•	 You could also use the blue mode, but since Thymio reacts to sound in this mode, the
exercise can be very noisy!

If all the groups come up with the same ideas, the teacher can use the above questions to
suggest that certain groups try other possibilities to cover all five options.

Students prepare a route for turquoise Thymio. Kindergarten class, Caroline Fayard (Paris)

95

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 G

e
t

T
h

y
m

io
 t

h
ro

u
g

h
 a

 m
a

z
e

L
e

v
e

l
1

-
 S

e
q

.2

Group discussion

Each group tries out its solution. One possibility is for the teacher to time how long it takes
Thymio to run the maze.

After doing at least five tests with all five modes, the class will notice that Thymio is able to get
through the maze more or less by itself.
If the teacher timed the different exercises, the class can create a podium, ranking the modes
from fastest to slowest. If they were not timed, students can vote on the mode they found to
be the fastest, easiest, most entertaining, most leisurely, etc.

Conclusion

The class summarizes together what they learned in this lesson:
•	 Thymio can always get out of a maze, either alone or with the help of a person.

Further study

Kindergarten students may want to try other mazes and shapes to see how Thymio reacts
in more complex environments. This will give them a chance to handle Thymio more as to
create their own mazes.

96 Pedagogical Module

Review: What is a robot?

Summary Whether they worked with an «unplugged» sprite or a Thymio robot,
students learn to define what a robot is: a machine that can interact with
its surroundings.

Key ideas
 (see Conceptual scenario, page 56)

“Robot”
•	 A robot is a machine that can interact with its surroundings.
•	 A robot has sensors that let it perceive its surroundings.
•	 A robot can perform actions: move, make a sound, produce light,

etc.
•	 A robot has a computer that decides which actions to take in

which situations.
•	 If you compare a robot to an animal, you can say that:

o Its sensors are like sensory organs
o Its motors are like muscles
o Its computer is like a brain
o The parts taken together are like a body

Inquiry-based methods Observation, discussion

Equipment For classes that have done Sequence 2
•	 For the teacher:

o A Thymio robot
o A screwdriver
o Handout 9, page 101

•	 For students:
o The drawing of Thymio created at the start of Sequence 2

(Lesson 2.1 and 2.2)

For classes that have done Sequence 1, Sequence 2, or both
•	 For students:

o Handout 10
o Handout 11

•	 For the class:
o Poster(s) created at the start of the sequence

Glossary Sensor, motor, computer, robot
Duration 45 minutes, split into two sessions

Foreword

This review lesson can be done at the end of Sequence 1, during which students will have
done unplugged activities, or at the end of Sequence 2, during which students will have
handled robots (here, Thymio).
This lesson is divided into three parts:

•	 A transition for classes having just completed Sequence 1
•	 A transition for classes having just completed Sequence 2
•	 A section applicable to both to help the class fully define what a robot is.

97

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
R

e
v

ie
w

 -
 W

h
a

t
is

 a
 r

o
b

o
t?

L
e

v
e

l
1

-
 R

e
v

ie
w

Teachers who have taught both sequences may choose to do only one of the two transitions,
most likely the one related to the sequence they most recently finished. In any event, it provides
an opportunity to re-hang all of the posters created during the lessons.

Transition for classes having just completed Sequence 1

Starting the activity

Students created programs that made it possible to guide the sprite (when the route is known
ahead of time) and have it collect rewards. The teacher asks the students to discuss the problem
of an unknown route, i.e., the maze. If you want the sprite to be able to get out of the maze
alone, without telling it step by step what to do or where to go, what do you do?

Discussion: sensors, motors, programs

Covering the idea of “test” again, the students can consider conditional constructs such as “IF

there is an obstacle in front of a sprite, THEN the sprite turns right.” This is a good approach.

The next question to ask is “How does the sprite know when there is an obstacle?” If the students
have a hard time answering, help them by making a connection with living beings: What would
a dog do to get out of a maze? A person? Students will bring up the senses, such as sight, smell,
touch, etc., which leads to the key idea of “sensor.” You can mention auditory, optic, olfactory
and tactile sensors and the like. The test that students did (“Is the chest green?”) requires an
optical sensor. Obstacle detection happens through sensors.

Group discussion

The class summarizes what they have covered: with sensors, the sprite can observe its
surroundings. With a program, you can tell the sprite what to do depending on the circumstances.

The teacher adds that to move on its own, the sprite would need muscles and feet, legs, etc.
In mechanics, we would say it needed “motors.”

Teaching notes

•	 With older students, the need for motors can also be a discussion topic.

In this case, the final question will be: What do we call objects that have sensors, motors and
programs?

Transition for classes having just completed Sequence 2

Starting the activity

The teacher shows the class a Thymio (turned off). They ask them to imagine what might be
inside. The students should be able to repeat the terms “robot,” “sensors,” “motors,” and
“wheels” that were already covered. If they have a hard time coming up with ideas, the teacher
can guide them using questions such as:

•	 “What makes Thymio’s wheels turn?”
•	 “How does Thymio get energy to move or turn on its lights?”
•	 “Do we need to fill it up with gas or feed it?”
•	 “How does it decide which direction to go in when it detects an obstacle?”

98 Pedagogical Module

Observation: What is inside a Thymio robot?

(entire class)

The teacher tells the students that certain parts of the Thymio robot can be taken apart to see
what is inside. After removing several screws, the teacher can show the students the robot’s
electronic components. Because the robot is fragile in this state, it is best that the teacher
alone handles it.

The teacher points out and names the various parts:
•	 The sensors and the red lights that light up automatically when the sensor detects

something.
•	 The electric wires that link the sensors to small black boxes (microprocessors) that act

as a computer for Thymio: they are what let it decide what it must do when the sensors
detect something.

•	 The “ambiance” lights that turn Thymio a different color based on its mode.
•	 The two motors, connected to wheels, that obey orders from the microprocessors.
•	 The battery that gives Thymio energy and that can be recharged.

Teaching notes

•	 Students will likely not understand the importance of microprocessors and/or the
program if they have not completed Sequence 1. They will understand why the wheels
are important for moving around and the sensors for detecting obstacles, but the
interpretation and decision-making aspects will be unclear. To help them, have a student
pretend to be a robot – i.e., obey without asking questions. Tell them to walk straight.
The student will walk straight towards the back wall and will begin to worry if they do
not receive another order. Rather than run into the wall, they will stop on their own.
The teacher can then ask why they disobeyed. Their eyes saw the wall, and their brain
told their legs to stop to not get hurt. The computer is the robot’s brain.

The teacher then asks the students to explain what Thymio is.

Review: What is a robot?

Documentary study

Next (or during a second time slot), the teacher passes out Handout 10 and Handout 11 and
asks the students to sort the objects, without telling them how many categories to create. It
is possible that the students will instinctively separate the humanoid robots into one category
and the non-humanoid robots into another, but they may also do it by shape or color.

Once they have done an initial sorting, the teacher adds the robot drawings from the first
lesson. The class concludes that all these objects are part of the same broad category, “robots.”
Despite their different shapes, they all have sensors, motors and computers. While they do not
look alike (and may not necessarily look like humanoids), they all work in a similar way. Our
definition of a “robot” is: A machine with sensors, motors and a computer, which can perceive
its surroundings and take action accordingly.

99

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
R

e
v

ie
w

 -
 W

h
a

t
is

 a
 r

o
b

o
t?

L
e

v
e

l
1

-
 R

e
v

ie
w

Teaching notes

•	 You can explain to students that we project our preconceived ideas about robots onto
them. When we see a humanoid robot, we think it will be “smart” because its shape
resembles a person. But in reality, they are often not any more sophisticated than a
robotic vacuum cleaner.

Scientific notes:

•	 What is the difference between an automated machine and a robot? The question
can be asked when we, as adults, consider certain machines (such as a machine tool).
Originally, they were programmed to reproduce a movement; however, this did not make
them robots but rather automated machines. An automated machine is programmed
to always repeat the same movement (“bend the arm to 45°,” “descend the drill,”
“drill down 5 cm,” “straighten the arm for 45 seconds”), but does not have sensors. If
the joint is blocked, the machine will still try to perform the other actions; if the drill
is no longer fitted with a drill bit, it will drill empty space, etc. Mechanical arms used
today are robots: a pressure sensor confirms that it is in contact with the plate to drill,
a gauge tells it if there is enough oil in its joints, an actuator confirms the joint rotation
angle, and a program tells it how to adapt or stop if a parameter changes. Many current
technological devices are robots. If your toaster knows when to eject your toast before
the bread burns, that means it is equipped with sensors and a program.

•	 Below are the special features of the robots on Handout 10 and Handout 11:
o Mechanical arms have sensors to control their gestures and consumable levels.
o Baxter is equipped with shape recognition to know which objects to pick up

from a conveyor belt.
o BigDog adapts the way it walks to the terrain to be able to continue moving

forward despite obstacles in the way.
o When in a group, Eporo robots imitate schools of fish to travel together, without

causing traffic jams or accidents.
o Robots can be used to help scientists explore locomotion mechanisms, such as

the Harvard Ambulatory Micro-Robot, which walks on several legs (it is available
in a centipede-inspired version), the Honda P2 for bipedal walking, RoboBee for
flight or the G9 robotic fish for swimming.

o Han explores emotion recognition and reproduction via subtle facial movements.
o Roomba is a vacuum cleaner that moves around the room on its own and goes

back to its docking station when the batteries run down. It closely resembles
Thymio’s yellow mode.

o The Sojourner rover is one of many robotic solar system explorers (the first was
Lunokhod 1, sent to the moon in 1970).

100 Pedagogical Module

Group discussion

To reinforce this key idea, the teacher can compare robots to animals:
•	 Its sensors are like sensory organs
•	 Its motors are like muscles
•	 Its computer is like a brain
•	 The parts taken together are like a body

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 A robot has a computer, sensors and actuators that are all interconnected.

Further study

•	 Have students draw more robots. Some will draw humanoid androids again, while others
will draw from science fiction. See how many draw cubic robots this time.

•	 Suggest a “philosophical” workshop on this question: Are machines smart?

101

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
R

e
v

ie
w

 -
 W

h
a

t
is

 a
 r

o
b

o
t?

L
e

v
e

l
1

-
 R

e
v

ie
w

The chassis: the battery (in the middle) feeds
the two motors (yellow) that turn the wheels

The motherboard, which holds the infrared sensors,
central light touchpad, microprocessors and diodes

HANDOUT 9

Thymio dissection

102 Pedagogical Module

HANDOUT 10

What do these things have in common? (1/2)

Mechanical arms

Han

Sojourner©

Eporo©

HAMR (© Harvard University)

Roomba©

103

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
R

e
v

ie
w

 -
 W

h
a

t
is

 a
 r

o
b

o
t?

L
e

v
e

l
1

-
 R

e
v

ie
w

HANDOUT 11

What do these things have in common? (2/2)

RoboBee© Thymio

Baxter©

BigDog©

G9 fish

Honda P2©

104 Pedagogical Module

Level 2 Activities

Overview

The theme that ties the Level 2 activities together is an adventure.

We suggest splitting the activities into two sequences:
•	 The first is entirely unplugged (done without a computer but with experimentation and

documentary equipment). This sequence sets the stage for an adventure during which
a hero must successfully overcome various challenges before he can return home. The
students will learn about the key ideas of algorithm, language, and data representation
(texts and images).

•	 The second is entirely plugged (requiring a tablet, computer or robot). This second
sequence can be any of the following:

o Sequence 2 involves programming on a tablet (using Scratch Junior). This
sequence (which we recommend as the default option) tells the hero’s adventure
through animation. The students will be introduced to programming by using a
graphic environment designed for young children.

o Sequence 2a is a variation of Sequence 2, for classes without tablets but which
do have computers (using Scratch rather than Scratch Junior). It should be noted
that if the school is equipped to choose between the above two options, we
strongly suggest opting for Sequence 2 (Scratch Junior), which is both better
suited to this age group and easier to use.

o Sequence 3 has students program a robot (Thymio) using the same concepts as
programming a computer or tablet, but applied to a physical object (the robot).
Please note: contrary to Sequence 2 or 2a, in this sequence, programming the
robot is completely unrelated to the adventure told in Sequence 1.

105

A
c

t
iv

it
ie

s
 L

e
v

e
l

2
O

v
e

r
v

ie
w

L
e

v
e

l
2

Lesson summary

Sequence 1: The adventure

Lesson Title Page Summary

Lesson 1 The hero’s journey

110

The hero awakes in an unknown world in the great
outdoors. A journey awaits where he must travel down
the mountain he finds himself on. Students must guide
him with conditional constructs.

Lesson 2 Decoding a message

115

At the end of this perilous journey, the hero must solve
a riddle carved on a tree trunk. Students understand
that it is a coded message. To help the hero, they must
decode the message to understand its meaning.

Lesson 3 Programming a route
119

The hero cannot reach the treasure at the bottom of the
sea, but he finds a small submarine. The students must
invent a language to pilot it remotely.

Lesson 4 Summoning the
magician 123

The hero must summon a magician by asking for help
from the birds. To do this, he must create a drawing on
the ground using white and black rocks. The students
learn how to pixelate an image in black and white.

Lesson 5 (Optional) Following a
recipe 129

Thanks to the magician, the hero will be able to create the
magic recipe. The students must analyze the structure of
the recipe to find the elements for an algorithm.

Lesson 6 (Optional) Building a
magic key 134

The hero can return home. Before he leaves, the
magician gives him a magic key that will let him come
back. The students must describe the algorithm that will
let him duplicate this key.

Sequence 2: Telling the adventure with Scratch Junior

Lesson Title Page Summary

Lesson 1 Getting started with
Scratch Junior 139

The students are introduced to Scratch Junior, an easy-
to-use graphic programming environment for children
ages 5 to 8. They explore the ways to control a character’s
movements.

Lesson 2 The first episode:
Choosing the hero
and controlling his
movements

146

Students tell an episode of their hero’s adventure. While
they do so, they learn the new functionalities of Scratch
Junior (deleting a character, importing a new character,
choosing a setting) and are exposed to the key ideas
from the previous lessons (set of instructions, event).

Lesson 3 Simplifying a program
by using loops

149

The students continue learning to use Scratch Junior by
exploring the instruction «repeat...,» which is a loop.
They practice anticipating what a program given to them
will do, combining loops and movement instructions.
Finally, they revise their initial program by replacing the
repeated instructions with loops.

Lesson 4 Coordinating several
scripts

153

Students tell a new episode of their hero’s adventure,
with more autonomy than in the first lessons. They
discover new functionalities in Scratch Junior and
deepen their understanding of what a set of instructions
and a program are.

Lesson 5 Predefined loops and
infinite loops 157

Students tell a new episode of their hero’s adventure.
They reinforce the key ideas from the previous lessons,
namely predefined loops, and learn about infinite loops.

106 Pedagogical Module

Lesson 6 Adding recorded
dialogues to the
program

160
Students learn to record character dialogues.

Lesson 7 Producing the final
episode autonomously 162

Students work on their own to tell the last episode of
their hero’s adventure. They cover the key ideas from
the entire sequence and finish their program.

Sequence 2a: Alternative with Scratch

Lesson Title Page Summary

Lesson 1 Introduction to the
Scratch programming
environment

166
Students are introduced to Scratch, an easy-to-use
graphic programming environment.

Lesson 2 Making a character
move 168 Students explore the ways to control a character’s

movements.
Lesson 3 Choosing the hero

and controlling his
movements 170

Students tell the first episode of their hero’s adventure,
where he comes out of the forest and follows the river
to the sea. During this time, they cover the key ideas
from the previous lesson (set of instructions, event),
learn about the idea of initialization and use predefined
loops («repeat…»).

Lesson 4 Programming several
sprites

174

The students tell another episode of the hero’s
adventure, where he sees the treasure at the bottom of
the sea and gets help to retrieve it. To do this, students
learn to load a new stage, add a sprite and cover the key
programming ideas from the first two lessons.

Lesson 5 Coordinating the first
two episodes

177

Students must figure out how to make the two first
episodes continue one after the other. To do this, they
learn the key idea of message: a message can be sent
during an instruction, and when the message is received,
it can trigger one or more instructions.

Lesson 6 Different types of
loops

179

Students tell the next episode of the hero’s adventure:
the octopus goes to the bottom of the sea to get the
treasure and bring it back to the surface. They reinforce
the key ideas from the previous lessons, namely
predefined loops, and learn about infinite loops.

Lesson 7 Producing the final
episode autonomously 181

Students work on their own to tell the last episode of
their hero’s adventure. They cover the key ideas from
the entire sequence and finish their program.

107

A
c

t
iv

it
ie

s
 L

e
v

e
l

2
O

v
e

r
v

ie
w

L
e

v
e

l
2

Sequence 3: Robotics with Thymio

Lesson Title Page Summary

Lessons 1,
2, 3

Introduction to
Thymio in Level 2

183

Students are introduced to the Thymio robot and
familiarize themselves with it. After exploring the various
pre-programmed modes, they have Thymio run a maze.
They gradually formulate a simple definition of what a
robot is.
(Adaptation of the four first lessons of the «Robotics in
Level 1» sequence, pages 82 and on)

Lesson 4 Programming Thymio
(1/2) 188

To go into more depth with Thymio, students discover
the Aseba/VPL programming environment. The graphic
interface lets them design their own programs for
Thymio.

Lesson 5 Understanding
sensors to program
Thymio

193

VPL programming for Thymio is event-driven: students
will learn how to use Thymio’s sensor status to trigger
precise actions.

Lesson 6 Programming Thymio
(2/2) 196 Students take on small challenges to create their own

VPL programs for Thymio.
Lessons 7
and 8

Obstacle course for
Thymio 198

Students must reproduce Thymio’s yellow «explorer»
mode. First, they write the program. Then, they test
their program in a real maze.

108 Pedagogical Module

Conceptual scenario: Level 2 computer science

The key ideas covered during these four sequences for Level 2 can be organized as follows.

109

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

e
q

u
e

n
c

e
 1

:
T

h
e

 a
d

v
e

n
tu

re
L

e
v

e
l

2
 -

 S
e

q
.1

Sequence 1: The adventure

Lesson Title Page Summary

Lesson 1 The hero’s journey

110

The hero awakes in an unknown world in the great
outdoors. A journey awaits where he must travel down
the mountain he finds himself on. Students must guide
him with conditional constructs.

Lesson 2 Decoding a message

115

At the end of this perilous journey, the hero must solve a
riddle carved on a tree trunk. Students understand that it
is a coded message. To help the hero, they must decode
the message to understand its meaning.

Lesson 3 Programming a route
119

The hero cannot reach the treasure at the bottom of the
sea, but he finds a small submarine. The students must
invent a language to pilot it remotely.

Lesson 4 Summoning the
magician 123

The hero must summon a magician by asking for help
from the birds. To do this, he must create a drawing on
the ground using white and black rocks. The students
learn how to pixelate an image in black and white.

Lesson 5 (Optional) Following a
recipe 129

Thanks to the magician, the hero will be able to create the
magic recipe. The students must analyze the structure of
the recipe to find the elements for an algorithm.

Lesson 6 (Optional) Building a
magic key 134

The hero can return home. Before he leaves, the magician
gives him a magic key that will let him come back. The
students must describe the algorithm that will let him
duplicate this key.

110 Pedagogical Module

Lesson 1 - The hero’s journey

Summary The hero awakes in an unknown world in the great outdoors. A journey
awaits where he must travel down the mountain he finds himself on.
Students must guide him with conditional constructs.

Key ideas
 (see Conceptual scenario, page 108)

“Algorithm”
•	 An «algorithm» is a method to resolve a problem.
•	 A test indicates which action to perform when a condition is met.
•	 A condition is an expression that is either true or false.

Inquiry-based methods Observation, experimentation

Equipment For each student
•	 Handout 12
•	 Handout 13 (for second and third grades only) For the class
•	 A video projector or A3 size printout (or poster) of Handout 12

Glossary Conditions, tests
Duration 1 hour

Foreword

The teacher explains to the students that in the following lessons, they will follow the adventures
of a hero or heroine and must help them solve riddles to be able to return home (for simplicity’s
sake, we will just say “hero” from here on).

Starting the activity

When he wakes up, a hero finds himself at the top of a mountain. He has no idea how he got
there and does not recognize the forest or valley below. He does not recognize the birds, either.
He is far from home. He sees a clearing below and decides to go there.

Create instructions using conditional constructs (in

groups or as a class)

The teacher passes out Handout 12 and projects the route the hero must follow to reach the
clearing at the foot of the mountain. To help him, the students must create a set of instructions
for the hero to follow exactly to get there safe and sound. The instructions must be IF–THEN
statements. For example:

IF the hero sees a cliff, THEN he must climb down it.

Depending on students’ ages, this activity can be done orally as a class or in small groups.
•	 If done as a class (which is typical in preschool), the class should decide together which

situations or obstacles the hero might come across (a river, a ravine, a cliff, a tunnel,

111

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 T

h
e

 h
e

ro
's

 j
o

u
rn

e
y

L
e

v
e

l
2

 -
 S

e
q

.1

etc.), and for each situation, they should come up with an instruction to overcome the
obstacle. As the students dictate the instruction, the teacher writes a sentence on the
board.

•	 If done in groups, the students work on their own, with the teacher suggesting they
first create a list of obstacles (checked after 15 minutes) and then the instructions for
the hero. Second graders should fill out Handout 13, while third graders can designate
someone to write down the instructions. Handout 13 can then be used as a summary
in their science notebook.

During the group discussion, the teacher can introduce a new computer term. A method used
to resolve a problem is an “algorithm.” In this activity, the algorithm is reflected in the series of
“tests”: a “condition” (“IF the hero sees a cliff”) followed by one or more instructions to follow
if the condition is met (“THEN he must climb down it”). At every stage of his journey, the hero
must check that all the program conditions are met and obey all applicable instructions to the
letter.

The teacher asks the students to compare this algorithm with another instruction to give the
hero: “Return home.” Here, the problem is very complex and no there are no explanations on
how to resolve it. If the hero does not know how to do it, the instruction will not help him. An
algorithm is built from “basic” instructions the hero knows how to do.

Third grade class, Emmanuelle Wilgenbus, Antony

Exercise: Creating other conditional constructs

The teacher asks students to create other instructions following the same rule (being as explicit
as possible). For example, they can imagine the hero being in another environment, such as a
hostile jungle, ice floe, futuristic city, etc.

They can also ask students to use conditional constructs to explain the algorithms they see
every day, such as in sports, grammar class or the school’s rules (what you must do in such-a-
such situation), etc.

112 Pedagogical Module

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 An “algorithm” is a method to resolve a problem
•	 A test indicates which action to perform when a condition is met
•	 A condition is an expression that is either true or false

The students write down these conclusions in their science notebooks.

Further study

Using gym equipment, the teacher can create another obstacle course for the hero, using
obstacles, tunnels, hoops, steps, etc. The aim of the exercise is to create instructions using the
“IF–THEN” structure so students can safely run the course.

113

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 T

h
e

 h
e

ro
's

 j
o

u
rn

e
y

L
e

v
e

l
2

 -
 S

e
q

.1

HANDOUT 12

The hero's route

114 Pedagogical Module

Instruction: In the boxes on the left, write down the obstacles the hero might find.
Then, in the boxes on the right, write in the instructions to help him get past the
obstacles.

IF the hero finds a ravine THEN he must

cross it by
walking along
the tree trunk.

IF the hero finds THEN he must

IF the hero finds THEN he must

IF the hero finds THEN he must

IF the hero finds THEN he must

HANDOUT 13

Instructions for the hero

115

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 2

 -
 D

e
c

o
d

in
g

 a
 m

e
s

s
a

g
e

L
e

v
e

l
2

 -
 S

e
q

.1

Lesson 2 - Decoding a message

Summary At the end of this perilous journey, the hero must solve a riddle carved on
a tree trunk. Students understand that it is a coded message. To help the
hero, they must decode the message to understand its meaning.

Key ideas
 (see Conceptual scenario, page 108)

“Information”
•	 We can code a text by replacing the letters with numbers.

Inquiry-based methods Observation, experimentation

Equipment For each student (second or third grades)
•	 Handout 14, page 118

For the class
•	 Handout 14 (projected on the board)

Glossary Coding, decoding
Duration 30 min

Starting the activity

In the previous lesson, the hero was able to safely come down the mountain. When he comes
to the clearing, he sees a long message carved on a tree trunk that he can not understand.

Experiment: decoding an encoded message (in groups)

The teacher projects the first half of Handout 14 on the board: it is the message carved on the
tree trunk. The teacher asks the students what they think about it. They can not read what is
written, although it looks like a text written in another language. Each symbol looks like numbers,
which will make it easy to name them. Perhaps, to understand the message, students need only
to find a correspondence between the symbols and the letters of our alphabet. The teacher
introduces the terms “encode” and “decode.”

Teaching notes
•	 For first graders, the entire activity should be done on the board as a class. Second

and third graders can write their answers down on paper in pairs.
•	 To make decoding easier and put more emphasis on the method rather than the

result, punctuation has not been encoded.
•	 In common language, the terms “coding,” “encoding,” and “encrypting” are often

misused or used interchangeably (see vocabulary note in the Level 3 sequence 1, page
213). Here, we are talking about encoding because we are interested in representing
alphabet characters using numbers, which is used in computer programming even when
information is not confidential. “Encryption” refers to changing a message so that it
cannot be understood by unintended recipients.

•	 In “traditional” coding, “A” must be encoded using “01” because all coding symbols must
be the same length (see note in the Level 3 sequence 1, page 213). However, at this age
as students are beginning to learn to count, they are told that numbers do not start with
a zero (except for zeros, of course). This is why the encoding here is done within boxes
to help clearly separate the symbols.

116 Pedagogical Module

Second grade class, Vanessa Guionie (Bergerac)

The teacher hangs up the entire documentary handout on the board. The students must find
the clues to decode this message (second graders should focus on one line at a time, while third
graders can decode the entire message). On the board, the teacher fills in the correspondence
table based on the group’s solutions.

If the students find it difficult to understand how to decode the message, the teacher can make
suggestions to point them in the right direction:

•	 Which are the shortest words? What words might correspond in English? The shortest
English words are “a” and “I.” English also has certain contractions, such as words ending
with ‘S, ‘T, ‘M, ‘D, as well as certain names that start with O’. Two letter words include
of, to, in, it, is, be, as, at, so, we, he, by, or, on, do, if, me, my, up, an, go, no, us, am and
the contraction endings ‘re and ‘ve as well as MC at the beginning of certain last names.

•	 Which letter is most common in English? (Answer: E). Where might it be here? In the
coded text here, it is the symbol 5. We can assume that “5” is always the letter E in the
first message. Incidentally, the letter E is the fifth letter of the alphabet.

•	 Because the symbols look like numbers, we can also try replacing the letters of the
alphabet on the same row (intuitively, we “want” to replace 1 with A, 2 with B, 3 with
C and so on).

Group discussion

Together, the class decodes the message:
FOLLOW DOWN THE STREAM
BENEATH THE SEA WATER
YOU SHALL FIND THE TREASURE
THAT WILL FULFILL YOUR DREAM

117

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 2

 -
 D

e
c

o
d

in
g

 a
 m

e
s

s
a

g
e

L
e

v
e

l
2

 -
 S

e
q

.1

In this code, the letter A is coded using “1,” the letter B with “2,” the letter E with “5,” and
so on through Z, which is “26.”
The students can encode and decode other messages of their own choosing to share (when
doing so, be sure to place the symbols in boxes again).

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 A text can be coded by replacing its letters with numbers chosen ahead of time (for

example, 1 can be “A,” 2 can be “B,” etc.).

The students write down these conclusions in their science notebooks.

118 Pedagogical Module

Instruction: Decode this message using and completing the correspondence table on
the board.

6 15 12 12 15 23 4 15 23 14 20 8 5 19 20 18 5 1 13

2 5 14 5 1 20 8 20 8 5 19 5 1 23 1 20 5 18

25 15 21 19 8 1 12 12 6 9 14 4 20 8 5 20 18 5

20 8 1 20 23 9 12 12 6 21 12 6 9 12 12 25 15 21 18

The message carved on the tree

1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

Correspondence table to decode the message on the tree trunk

HANDOUT 14

A riddle to decode

119

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 P

ro
g

ra
m

m
in

g
 a

 r
o

u
te

L
e

v
e

l
2

 -
 S

e
q

.1

Lesson 3 - Programming a route
Summary The hero cannot reach the treasure at the bottom of the sea, but he finds a

small submarine. The students must invent a language to pilot it remotely.
Key ideas
 (see Conceptual scenario, page 108)

“Machines”
•	 The machines all around us simply follow “orders” (instructions).
•	 By combining several simple instructions, we can perform a

complex task .

“Languages”
•	 We can give a machine instructions by using a special language

called a programming language, which can be understood by both
people and machines.

•	 A program is an algorithm in a programming language.
•	 A bug is an error in a program.
•	 A very small bug can have very big consequences.

Inquiry-based methods Experimentation

Equipment In pairs
•	 Handout 15, page 122
•	 A pawn (toy, figurine) to be the submarine

For the class
•	 Handout 15, page 122, projected on the board
•	 A silhouette with a magnet (or a tack) for the submarine

Glossary Programming language, instruction, bug
Duration 1 hour

Starting the activity

After following the river, the hero ends up at the sea. On the beach, he sees a dock and goes
closer. When he looks into the water, he can see a treasure! But he cannot reach it. However,
he sees a small submarine that can be controlled by voice. He will need to explain how to go
get the treasure.

Experiment: Inventing a language to guide the

submarine (in pairs)

The teacher projects Handout 15 on the board: the scene shows the bottom of the sea, where
there is a maze of coral the submarine must navigate through to reach the treasure. In pairs,
the students must come up with a set of instructions to describe the route to take. The teacher
introduces the term “program” to describe the set of simple instructions that can be performed
by a machine.
The conditions are: the submarine cannot move more than one square at a time and it cannot

120 Pedagogical Module

move diagonally. The students can try to reproduce their route by moving their pawn, making
sure to carefully follow all of the instructions.

Group discussion

The teacher asks one of the groups to present their program to the class. To check their
programs, students carefully follow the instructions to move the submarine silhouette around
the board. If the method works, the teacher goes back to the board and asks if other students
have other suggestions.

There are (at least) two languages to command the submarine. We can use “absolute” directions
(go towards the surface, go west/towards the dock, etc.) or “relative” directions that depend
on the direction the submarine is facing (turn right, go forward, turn left, go back, etc.). Note:
it is best to cut instructions such as “go forward one square to the right” into two separate
instructions: 1) turn right (while staying in the same square), then 2) move forward one square.

Teaching notes

•	 The first approach to spatial processing (North, West, etc.) is called “allocentric” while
the second (right, left, etc.) is called “autocentric”.

•	 Students do not need to know these terms as they will not be used in later lessons. Being
able to tell the difference between these two methods is not the aim of this lesson, and
students will often mix terms from both.

•	 A third approach (rarer) can also be suggested: assigning coordinates to each square
(A1, A2, B1) and, like in a game of Battleship, code movements by giving the name of
square of departure and arrival. For example, “Go from A1 to A2.” Please note: The
direction “A1 to A2 is not ambiguous because these squares are adjacent. However, “A1
to B7” is ambiguous (and therefore not satisfactory) as there are several ways to move
from square A1 to square B7. We will not go into further detail about this method in
later lessons.

It is likely that different teams will suggest the two different methods. If this is not the case,
the teacher can introduce the other method during the group discussion.

Allocentric languages (or <<absolute>>) Autocentric language (or <<relative>>)

•	 Rocks (meaning «move forward one square
towards the rocks»), bottom, bottom, bottom,
rocks, surface, rocks

•	 East, down, down, down, east, east, up, east

•	 Forward (meaning «move forward one square
right in front of you»), dive, dive, dive, forward,
forward, up, forward

Teaching notes

•	 If this task is easy for students, you can have them program the submarine’s return trip,
remembering to include the instruction “grab,” meaning “grab the treasure”, so they
do not return empty-handed.

The class remarks that the submarine needs only a very basic language to be controlled (with
very few different words). The teacher explains that machines like computers, robots, etc. can
be programmed using special languages, called “programming languages,” which are much
simpler than natural languages such as English, French, etc.

121

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 P

ro
g

ra
m

m
in

g
 a

 r
o

u
te

L
e

v
e

l
2

 -
 S

e
q

.1

This group discussion is also when the idea of “bug” can be covered. As students present their
programs, there will likely be some that have left out or made a mistake in an instruction. When
this happens, even if the class knows the result will be incorrect, the teacher can complete the
program all the way through to see where the submarine ends up.
A single error can have very serious consequences. An error in an autocentric language can
take you farther from the goal than an allocentric language error. However, in both cases, this
is a bug and there are two things to take note of. First, the goal is not met, so the failure is just
as serious in both cases. Second, if the pirate who left the treasure at the bottom of the sea
also set booby traps, you do not want to make a mistake – even a little one.

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 A program is a set of instructions in a special language that people and machines can

understand.
•	 A bug is an error in a program. A very small bug can have very big consequences.

The students write down these conclusions in their science notebooks.

Further study

To illustrate how to break complex tasks down into simple instructions, the teacher can do the
following activity. They want to do something that seems easy (e.g., drink a glass of water, eat
a cookie) but will not obey until given very basic and perfectly explicit tasks. The students must
explain without being vague what the teacher must do (i.e., “program” the teacher as if they
were a machine): “raise your hand,” “raise your elbow,” “bring your hand close to the glass,”
“grab the glass lightly,” “bring it towards your mouth,” “open your lips,” etc. The teacher mimes
the orders as they hear them. Obviously, the degree of detail allowed in “simple” instructions
is up to the teacher while the students begin to understand how difficult it is to break tasks
down without ambiguity for a machine to do a task that people find easy.

122 Pedagogical Module

Instruction: Write a program (set of instructions) so the submarine can follow the route to
collect the treasure. But be careful: it can only move one square at a time and cannot move
diagonally.

Instruction: Write a program (set of instructions) so the submarine can follow the route to
collect the treasure. But be careful: it can only move one square at a time and cannot move
diagonally.

HANDOUT 15

The coral maze

123

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 S

u
m

m
o

n
in

g
 t

h
e

 m
a

g
ic

ia
n

L
e

v
e

l
2

 -
 S

e
q

.1

Lesson 4 - Summoning the
magician

Summary The hero must summon a magician by asking for help from the birds. To
do this, he must create a drawing on the ground using white and black
rocks. The students learn how to pixelate an image in black and white.

Key ideas
 (see Conceptual scenario, page 108)

“Information”
•	 We can represent an image using a grid of black or white pixels.

Inquiry-based methods Observation, experimentation

Equipment For each student
•	 Handout 16, page 126
•	 Handout 17, page 127 (or on tracing paper)

For each group
•	 Handout 18, page 128

Glossary Pixel
Duration 1 hour

Starting the activity

In the treasure chest from the bottom of the sea (previous lesson), the hero finds a parchment
that describes a recipe for a magic cake that will let him return home. But without the ingredients
or utensils, the hero cannot make it. The parchment tells him about a magician who can help
him. To contact him, the hero must send a message to the birds, who can find the magician.

Experiment: Pixelating an image (in pairs)

Because the birds in this country do not speak the same language as the hero, there is only one
solution to communicate with them: draw something on the ground to get their attention. The
hero can use large rocks in black or white to create his message. He can use them to outline
something on the ground that the birds can see from above.

The teacher gives students Handout 16 and the top part of Handout 17 (7x7 grids). Using white
or black rocks placed on a 7 x 7 grid (called “pixels”), students must create a basic rendering
of the magician’s hat. Each grid square must be either entirely black or entirely white, which
corresponds to using a black rock or a white one.

Scientific notes:

•	 The squares of this image are called “pixels” (a portmanteau of the words picture and
element). Here, students are pixelating an image. Pixelated images come in various
formats: black and white, grayscale and colored images. This Level 2 lesson will only
deal with black and white images. Other formats are covered in Level 3 activities (see
Sequence 3: Sending news, pages 295 and on).

124 Pedagogical Module

Teaching notes

•	 Printing out the magician’s hat in black and white allows students to trace the outline by
placing Handout 16 under Handout 17 (which can be printed on tracing paper if desired).

•	 Regardless of how students transfer the outline, it is important to remind them that
they are not meant to copy the hat exactly. The squares must be either entirely black or
entirely white, and students cannot divide the squares by tracing extra details to make
their image look more like the original drawing.

Group discussion

The students compare the pixelated images they created. Opposite
is an example of one possible result, but there are a range of
possibilities.

While the images may be hard to recognize at close range, when
viewed from the other side of the classroom, the image clearly looks
like a hat.

Experiment: Improving the pixelated image (third grade)

Older students will find that the pixelated image is not precise enough. The teacher can ask
them to find ways to improve the result. Students will likely come up with two possibilities:
either using rocks (pixels) in other colors, or using more rocks. The second option, which has
long been the actual approach, is a good segue to the idea of “resolution”: by increasing the
number of grid cells, we can refine the image and make it easier to identify (but the number of
pixels increases very quickly: a 7x7 grid has 49 pixels; when doubled, we can draw 196 pixels,
and so on).
The teachers gives students a second, more detailed grid with 14x14 pixels (bottom half of
Handout 17). They must repeat the activity: pixelate the initial image on this new grid. Again,
make sure the students do not simply trace the original drawing.

On the left, the magician’s hat pixelated on a 7x7 grid. On the right, the same hat pixelated on a more detailed
grid. Third grade class, Emmanuelle Wilgenbus, Antony

125

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 S

u
m

m
o

n
in

g
 t

h
e

 m
a

g
ic

ia
n

L
e

v
e

l
2

 -
 S

e
q

.1

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 We can represent an image using a grid of black or white pixels.

The students write down these conclusions in their science notebooks.

Further study

In art class, the students can create the grid themselves with posters or clay, for example. They may also
want to pixelate other drawings using the same principle. We highly encourage students to reinforce
the idea of pixilation in this way. Handout 18 also provides additional images that work very well for
this type of activity.

Third grade class, Emmanuelle Wilgenbus, Antony

126 Pedagogical Module

Instruction: Fill in certain grid squares in black
to copy the magician’s hat. Each square must be
entirely black or entirely white.

Instruction: Fill in certain grid squares in black
to copy the magician’s hat. Each square must
be entirely black or entirely white.

Instruction: Fill in certain grid squares in black
to copy the magician’s hat. Each square must be
entirely black or entirely white.

Instruction: Fill in certain grid squares in black
to copy the magician’s hat. Each square must
be entirely black or entirely white.

HANDOUT 16

Summoning the magician: The hat to draw

127

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 S

u
m

m
o

n
in

g
 t

h
e

 m
a

g
ic

ia
n

L
e

v
e

l
2

 -
 S

e
q

.1

Instruction: Fill in certain grid squares in black
to copy the magician’s hat. Each square must be
entirely black or entirely white.

Instruction: Fill in certain grid squares in
black to copy the magician’s hat. Each square
must be entirely black or entirely white.

Instruction: Fill in certain grid squares in black
to copy the magician’s hat. Each square must be
entirely black or entirely white.

Instruction: Fill in certain grid squares in
black to copy the magician’s hat. Each square
must be entirely black or entirely white.

HANDOUT 17

Summoning the magician: Alternate grids

128 Pedagogical Module

Instruction: Using the grid, pixelate your chosen image, then create it using Post-Its.

HANDOUT 18

A few suggestions for the <<Post-It art>>

129

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 5

 -
 (

O
p

ti
o

n
a

l)
 F

o
ll

o
w

in
g

 a
 r

e
c

ip
e

L
e

v
e

l
2

 -
 S

e
q

.1

Lesson 5 - (Optional) Following a
recipe

Summary Thanks to the magician, the hero will be able to create the magic
recipe. The students must analyze the structure of the recipe to find the
elements for an algorithm.

Key ideas
 (see Conceptual scenario, page 108)

“Machines”
•	 By combining several simple instructions, we can perform a

complex task.

 “Algorithm”
•	 An «algorithm» is a method to resolve a problem.
•	 An algorithm can contain basic instructions, tests and loops.
•	 A test indicates which action to perform when a condition is

met.
•	 A condition is an expression that is either true or false.
•	 A loop is used to repeat the same action several times.
•	 Certain loops are repeated a specific number of times.
•	 Certain loops are repeated until a condition is met.

Inquiry-based methods Observation, experimentation

Equipment For each student
•	 Handout 19, page 132

For each group:
•	 Handout 20, page 133

Glossary Algorithm, instruction, loop, test, condition
Duration 1 hour

Foreword

This lesson is based on a rather long text that covers measurement concepts (g, mL, cL) that will
not yet have been addressed. This exercise should be done in third grade classes, or perhaps
a second grade class at the end of the year. However, younger students can do the same work
with simpler recipes, even if all structures in the following recipe may not be covered.

Starting the activity

After being summoned by the birds, the magician appears from a huge cloud of white smoke.
The hero hands him the parchment from the treasure chest. The magician understands that
the recipe will send the hero back home. With a wave of his magic wand, the magician makes
all of the ingredients and utensils appear to make the magic recipe.

130 Pedagogical Module

Observation: Is a recipe an algorithm? (as a class)

The teacher gives students Handout 19 and also hangs a copy of the recipe hero found on the
board. When he eats a cake made from this recipe, he will immediately return home. Students
read the recipe individually to become familiar with the recipe text.
Once students have read and understood the recipe, the teacher divides the class into groups
and gives each group Handout 20. The instruction is simple: the groups must categorize the
parts of the recipe according to any criteria of their choosing.
During the group discussion, students explain why they grouped certain parts of the text
together and excluded others. Gradually, the class identifies four different structure categories
in the recipe:

•	 Instructions: “Melt the butter”
•	 Tests: “If the batter is too runny, then add a little flour.”
•	 Repetitions, which are called “loops” in computer language (this concept is covered in

more detail in Lesson 1.6 page 134): “Repeat 18 times”
•	 Sequences: “Melt the butter then mix,” “While the raspberries dry, prepare the whipped

cream.”

Teaching notes

•	 If the students have trouble, the teacher can gradually guide them with questions such
as “Are there any instructions?”, “What about tests?” (these ideas are covered in Lesson
1.1 page 110), or “Are the instructions separate steps or are they sequences?”

•	 The conditional structure “IF–THEN” is quickly identified this activity. The teacher can
also tell students that instructions are often verbs (imperative tense), while sequences
use conjunctions such as then, and, etc.

Scientific notes:

•	 Sequences can be divided more precisely:
o Temporal sequence: “Melt the butter then mix”: These are “sequential

instructions” (they are done one after the other).
o Independent instructions: While the raspberries dry, prepare the whipped

cream.” These are “parallel” instructions (they are done simultaneously and
independently)

o Event-driven instructions: “If the matter is too runny” (they are only done if a
certain event happens)

•	 In this recipe, it is also possible to identify several types of loops:
o Iterative loops (“Repeat 18 times”)
o Conditional loops (“Cook on high heat until the batter is golden brown”)

131

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 5

 -
 (

O
p

ti
o

n
a

l)
 F

o
ll

o
w

in
g

 a
 r

e
c

ip
e

L
e

v
e

l
2

 -
 S

e
q

.1

Third grade class, Emmanuelle Wilgenbus, Antony

Application: Making the recipe

Following the quantities in the recipe, the teacher can do a cooking activity with the class
and let them eat what they make.

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson.
•	 Making a cake is a complex task.
•	 By combining several simple instructions, we can perform a complex task.
•	 The method for making a cake is called an algorithm or a recipe.
•	 An algorithm can contain basic instructions, tests and loops.
•	 A test indicates which action to perform when a condition is met.
•	 A loop is used to repeat the same instruction several times.
•	 Certain loops are repeated a specific number of times.
•	 Certain loops are repeated until a condition is met.

The students write down these conclusions in their science notebooks.

132 Pedagogical Module

Ingredients (for 24 mini cakes):
- 180 g flour - 100 g corn starch
- 2 eggs - 100 g granulated sugar
- 1 teaspoon vanilla - 30 g butter
- 400 ml 2% milk - 72 raspberries
- 40 cl heavy cream - powdered sugar for dusting

Preparation:
Melt the butter, then mix in half of the sugar and the eggs in a large bowl. Pour in the
milk, then add the vanilla and corn starch. Mix well. Little by little, add the flour, stirring
until the batter is smooth and there are no lumps. If the batter is too runny, then add a
little flour.

To make the crepes, repeat the following process 18 times: pour a ladleful of batter on a
grease pan, cook on high heat until the batter is golden brown, flip the crepe and cook
the other side for one minute.
Next, cut each of the 18 crepes into 4 mini crepes using a glass or a biscuit cutter.

Wash the raspberries. While the raspberries dry, prepare the whipped cream. Whip the
cream until it forms stiff peaks. Add 3 tablespoons of sugar and whip for another minute.
Be careful not to over whip the cream or it could turn into butter.

Make the 24 mini cakes: In a small bowl, put one mini crepe, then a spoonful of whipped
cream, another mini crepe, then another spoonful of whipped cream, then a last mini
crepe. Decorate with 3 raspberries. Sprinkle with powdered sugar.

HANDOUT 19

The recipe for the magic cake

133

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 5

 -
 (

O
p

ti
o

n
a

l)
 F

o
ll

o
w

in
g

 a
 r

e
c

ip
e

L
e

v
e

l
2

 -
 S

e
q

.1

Melt the butter, then mix in half of the sugar...

Pour in the milk...

Mix well.

...repeat the following process 18 times...

Flip the crepe and cook the other side

Wash the raspberries.

While the raspberries dry, prepare the whipped cream.

If the batter is too runny, then add a little flour.

Make the 24 mini cakes...

Decorate with 3 raspberries.

Sprinkle with powdered sugar.

HANDOUT 20

The recipe for the magic cake: Expert

134 Pedagogical Module

Lesson 6 - (Optional) Building a
magic key

Summary The hero can return home. Before he leaves, the magician gives him a
magic key that will let him come back. The students must describe the
algorithm that will let him duplicate this key.

Key ideas
 (see Conceptual scenario, page 108)

“Languages”
•	 A program is an algorithm in a programming language..

 “Algorithm”
•	 An “algorithm” is a method to resolve a problem.
•	 A loop is used to repeat the same action several times.
•	 Certain loops are repeated a specific number of times.

Inquiry-based methods Observation, experimentation

Equipment For each group:
•	 Lego®-style building blocks.

Glossary Coding, decoding
Duration 1 hour

Preparation

Please note that this lesson requires a large number of Lego®-style building blocks in standard
colors and shapes. Each group will have a “key” made from three to six blocks that will then be
copied (up to around six), so you will need to have at least 100 to 200 blocks for the entire class.
Before the lesson, the teacher makes one or two “keys” using Lego®-style building blocks. They
should be stacked in repetitive patterns, such as in the example below. Repeating identical
patterns emphasizes the idea of “loop” in this lesson.

Second grade class, Vanessa Guionie, (Bergerac)
“The key is made of Legos. The white ones are on the right,
the blue ones on the left, the yellow ones below.”

135

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 6

 -
 (

O
p

ti
o

n
a

l)
 B

u
il

d
in

g
 a

 m
a

g
ic

 k
e

y
L

e
v

e
l

2
 -

 S
e

q
.1

Starting the activity

The magician was able to help the hero make the magic recipe to return home. Before leaving,
the magician gives the hero a magic key so he can come back to this world as often as he wants.
The hero then takes a bite of the cake, closes his eyes, and wakes up at home. In his hand is
the magic key that he wants to share with his friends. But how can he describe it to them so
that they can make their own?

Observation: Describe and reproduce the magic key

(in groups)

The teacher gives each group one of the keys made beforehand. In groups, the students must
identify their key’s basic pattern as well as the number of repetitions so they can completely
recreate it.
So that students describe their key well, give them the following scenario: “Imagine that
we’re on the phone and you have to explain to me how to make the key. You have to describe
everything, because I can not see what you’re looking at and you can not see what I’m doing.”

Teaching notes

•	 Students may come up with the idea to number the studs on the Lego® blocks to make
the description easier. This takes more time, but is more precise.

Third grade class, Emmanuelle Wilgenbus, (Antony)

Group discussion

When they think they have a good, unambiguous description of their key, students from each
group show the class their key and describe it. The teacher helps them revise their “program”
and “instructions” by introducing the term “loops.”

136 Pedagogical Module

Experiment: Creating and describing a new key

(in groups)

One student from each group makes a new key using the same principle as the one made by
the teacher: a basic pattern reproduced two, three or four times. Without showing it to the
rest of the group, the student must then describe the pattern and the loop so the others can
reproduce a copy of their key. The teacher makes sure the student does not show the original
to the others and does not correct them if they make any mistakes. The student must come up
with an unambiguous description of their key by being precise, clear and concise.
Finally, the students compare the original key with their copies. If there are any differences,
they must try to understand why.

Exercise: Creating more complex keys (in groups)

The teacher hands out a second, more complex key to each group. It features a simple pattern
that combines two loops: for example, “ABC ABC ABC D ABC ABC ABC D.” The class must come
up with a description of the basic pattern (ABC ABC ABC D) that is applied twice, and which in
fact includes a triple loop with a smaller basic pattern (ABC).
Following this example, students should create more complex keys with nested loops, being
sure to describe it so that the others can copy it properly.

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 An algorithm is a method used to resolve a problem.
•	 A loop is used to repeat the same instruction several times.
•	 Certain loops are repeated a specific number of times.

The students write down these conclusions in their science notebooks.

137

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
T

e
ll

in
g

 t
h

e
 a

d
v

e
n

tu
re

 w
it

h
 S

c
ra

tc
h

 J
u

n
io

r
L

e
v

e
l

2
 -

 S
e

q
.2

Sequence 2: Telling the adventure

with Scratch Junior
This sequence deals with programming an animation to tell the hero’s adventure from Sequence 1.

Scratch Junior, an ideal environment for learning to code

There are a variety of tools for learning to program, but few of them are suited to young
elementary students who are still learning to read. To do this sequence as early as first grade,
we chose to base it on the Scratch Junior11 programming environment, where all programming
elements are represented by drawings, without any text other than numbers.
Scratch Junior has other advantages, such as being free, easy to use and very complete. Moreover,
students who have used Scratch Junior during elementary school will feel comfortable continuing
learning in Scratch grades four and up (see Sequence 2 in the Level 3 activities, from page 229).

What can you do if your school has only computers but not

tablets?

Scratch Junior is only available for tablets. This is easier for younger children because they do
not need to know how to type, use the mouse or browse through a tree structure of folders and
files. Tablets are ideal for programming in elementary school while computers are more relevant
for grades four and up.
However, it is still possible to do programming in grades three and under. If your school does
not have tablets, you can adapt this sequence to the more elaborate Scratch version, which runs
on computers (on Windows, Mac and Linux operating systems). To make the adaptation easier,
we suggest doing an alternative sequence using Scratch instead of Scratch Junior (Sequence 2a:
Telling an adventure with Scratch, page 164).

What can you do if your class has a robot?

We have another alternative to Scratch Junior if your class has a Thymio robot (Sequence 3, page
182). Programming a robot uses the same concepts as programming on a computer; they are
simply applied to a physical object. The Thymio robot is programmed using visual programming
language (VPL), which, although not as rich or simple as Scratch Junior, is a very good tool for
learning to program from first grade.

Working in half-groups

Ideally, there should be a tablet for every student pair.
To make this possible and make it easier to manage the class during the programming activities
(during which the teacher will have to work closely with students), half the class can work
independently on exercises not requiring assistance from the teacher while the other half of the
class can work on the project. Then, the teacher can have the groups switch roles (A and B in
the following lessons).

11 The Scratch Junior application can be downloaded at http://www.Scratchjr.org/ in two versions, one for

Android tablets (tap the icon) and one for Apple tablets (tap the icon).

138 Pedagogical Module

Doing the project yourself first

It is essential for the teacher to take two or three hours of their own time BEFORE the first
programming lesson to get familiar with Scratch Junior and carry out the tasks the students
will have to perform during the project.
Otherwise, they may not be able to help the students when they need it. It is very easy
(simply follow the instructions in this sequence) and even quite amusing.

Lesson Title Page Summary

Lesson 1 Getting started with
Scratch Junior 139

The students are introduced to Scratch Junior, an
easy-to-use graphic programming environment for
children ages 5 to 8. They explore the ways to control
a character’s movements.

Lesson 2 The first episode:
Choosing the hero and
controlling his move-
ments 146

Students tell an episode of their hero’s adventure.
While they do so, they learn the new functionalities
of Scratch Junior (deleting a character, importing a
new character, choosing a setting) and are exposed
to the key ideas from the previous lessons (set of
instructions, event).

Lesson 3 Simplifying a program
by using loops

149

The students continue learning to use Scratch Junior

by exploring the instruction «repeat...,» which is a
loop. They practice anticipating what a program given
to them will do, combining loops and movement
instructions. Finally, they revise their initial program
by replacing the repeated instructions with loops.

Lesson 4 Coordinating several
scripts

153

Students tell a new episode of their hero’s adventure,
with more autonomy than in the first lessons.
They discover new functionalities in Scratch Junior

and deepen their understanding of what a set of
instructions and a program are.

Lesson 5 Predefined loops and
infinite loops 157

Students tell a new episode of their hero’s adventure.
They reinforce the key ideas from the previous
lessons, namely predefined loops, and learn about
infinite loops.

Lesson 6 Adding recorded
dialogues to the
program

160
Students learn to record character dialogues.

Lesson 7 Producing the final
episode autonomously 162

Students work on their own to tell the last episode of
their hero’s adventure. They cover the key ideas from
the entire sequence and finish their program.

139

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 G

e
tt

in
g

 s
ta

rt
e

d
 w

it
h

 S
c

ra
tc

h
 J

u
n

io
r

L
e

v
e

l
2

 -
 S

e
q

.2

Lesson 1 - Getting started with
Scratch Junior

Summary The students are introduced to Scratch Junior, an easy-to-use graphic
programming environment for children ages 5 to 8. They explore the
ways to control a character’s movements.

Key ideas
 (see Conceptual scenario, page 108)

«Machines» and «Languages»
•	 We can give a machine instructions by using a special language

called a programming language, which can be understood by both
people and machines.

•	 An «algorithm» is a method to resolve a problem.
•	 A program is an algorithm in a programming language.

Equipment For the class
•	 (Recommended) A video projector system to show the teacher’s

tablet screen to the entire class.

For each pair or small group
•	 An Android or OS tablet with the Scratch Junior application

installed1.

For each student
•	 Handout 21, page 145 (this handout will be used again in the

other lessons)

Glossary Program, script, character, stage, instruction, event
Duration 1 hour

Starting the activity
The teacher explains to the students that they are going to use a tablet to tell the main episodes of their
hero’s adventure. To do this, they must program the tablet, i.e., tell it what to do. They will have to use
a special language, called a programming language, which can be understood by both the students and
the tablet. The language they are going to use is called Scratch Junior. Today, they are going to learn to
use Scratch Junior and next time they will begin working on their stories.

Teaching notes

•	 You learn to program by programming, not by watching someone program. There are benefits
to working on a problem with others, but it is also important that all students have a chance
to do programming exercises individually. We suggest putting students into small groups with
tablets (ideally, two students per tablet) and to have one student handle the tablet at a time
and then having them switch roles every five to ten minutes.

•	 As explained on page 138, we recommend splitting the class in half. Make sure that the student
groups using one tablet name their files with easily identifiable names and do not delete others’
work. We suggest that class groups A and B save their programs using file names that start with
A and B, respectively.

•	 Additionally, tablets should be identified (e.g., numbered) so that students can continue working
on the same tablet during every lesson.

140 Pedagogical Module

Launching Scratch Junior and basic presentation
(as a class)

The teacher projects the tablet screen on the board to show students the basics of how to use
Scratch Junior.

Starting the software
To start Scratch Junior, tap once on the following icon from the list of applications installed on
the tablet:

You come to a home screen with two icons: a house and a question mark. If you tap the house,
you are taken to a new page that shows everything that has been created on the tablet with
Scratch Junior. Tap the “+” icon below to create a new program:

You then go to the screen shown on Handout 21. Students will program the tablet from this
screen.

Principle of a sequence of instructions

In the center of the screen, there is a gray rectangle with a drawing of a cat in the middle.
This is where the story will be told. To program the story, instructions (small colorful puzzle
pieces) are placed in the large white strip at the bottom of the screen (programming area).
The silhouette of the cat, to the left of the programming area, indicates that the instructions
placed here are for the cat. If, for example, you use your finger to drag the circled icon below
to the programming area (called a drag and drop) and then tap the icon, you will see the cat
move slightly to the right:

You can add other instructions and connect them to the first one, then tap the group of
instructions. You can see the cat follow all of the grouped instructions in order, from left to
right. When an instruction is being executed, the puzzle piece becomes darker:

141

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 G

e
tt

in
g

 s
ta

rt
e

d
 w

it
h

 S
c

ra
tc

h
 J

u
n

io
r

L
e

v
e

l
2

 -
 S

e
q

.2

A block of instructions within the programming area is called a script. Several scripts can coexist
and be executed simultaneously. All of the scripts together are called a program.

Teaching notes

•	 This presentation can be divided into two phases, especially for younger children. The
teacher can show how to start the software and the students can do it immediately; then
the teacher can explain the principle of a sequence of instructions with the example of
having the cat move, and the students then experiment with it on their own.

•	 On the home screen, the question mark will take you to a presentation video of Scratch
Junior. This video is very useful for helping teachers learn to use the software, but it is
a little too fast for very young students. We suggest showing the video in steps; here,
for example, show only the first ten seconds.

•	 If possible, it is preferable for the teacher to have a demonstration tablet connected
to a projector so the class can see the screen and to show students a few actions at an
appropriate pace. It should be noted that depending on the tablet brand, this may be
rather complex and require third-party applications (which are not always free). The
site below explains the process: https://blog.tripplite.com/how-to-connect-a-tablet-to-
a-dvi-monitor-flat-screen-tv-or-hdmi-projector/

Getting started with Scratch Junior
(in small groups, ideally in pairs)

Students are divided into as many groups as there are tablets available. In each group, one
student is designated to handle the tablet for the first few minutes (see teaching notes at the
start of this lesson). Students will then take turns handling the tablet. The student opens the
Scratch Junior software, creates a new story and practices making the cat move, as explained
to the class.
The teacher gives students time to explore the environment and let everyone see what the
instructions do (for example, five minutes for each student in the group): moving the cat up,
down, right and left, turning both directions, hopping and returning to the starting positing,
combining several movement instructions.

The teacher brings up the grid (icon) and shows the class that when the cat is moved with
a finger, a blue square moves with him:
This square indicates the cat’s position: here, for example, the cat is
in the grid square where the third row from the bottom intersects
with the fifth column from the left, which should then be written
down (row 3, column 5). The teacher asks the students to bring up
the grid on their tablets and gives them a few challenges.

142

Challenges: Controlling the cat’s movements
(ideally in pairs)

The challenges gradually get more difficult. Here are a few examples of possible challenges
and the programs to solve them:

- Exercise A: Move the cat three squares to the right, then two squares up:
- Exercise B: Move the cat across the screen from left to right, with a hop every four steps

(cat starts from column 3):
- Exercise C: Have the cat move around the entire stage (cat starts from the square row

3, column 3).

Second grade class, Vanessa Guionie (Bergerac)

For each challenge, a student presents their solution to the class using the demonstration
tablet. Some students may have noticed that the number “1” that appears on the movement
instructions can be replaced by a bigger number and that it controls the number of squares the
cat moves. If so, the student sends one of these students to show the class their solution to
the first challenge. If not, explain this feature at the end of the first challenge by showing two
scripts in the programming area and compare what they do by tapping on them. The teacher
asks the students which they prefer and tells them that if there are a lot of instructions for a
character, it is best to opt for the script that takes up less space and to remove the other one
by dragging it out of the programming area.
The answers to the exercises are:

- Exercise A: or

- Exercise B:

143

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 G

e
tt

in
g

 s
ta

rt
e

d
 w

it
h

 S
c

ra
tc

h
 J

u
n

io
r

L
e

v
e

l
2

 -
 S

e
q

.2

- Exercise C:

Teaching notes

•	 If the cat reaches the edge of the screen, you can move it wherever you like with a drag
and drop.

Activity: Triggering an event (ideally in pairs)

The teacher shows students how to switch to full screen mode (icon , upper bar). The
class observes two things: first, the grid disappears (it is used only to facilitate programming
movements), and second, you can no longer launch scripts because they no longer appear and
you cannot tap them. When you tap the green flag, the cat goes back to the starting position,
but does not execute the movements. This problem can be resolved as follows: tap the yellow
icon to bring up the commands and choose the green flag:

Next, from the programming area, connect this instruction to the left side of the instructions
to trigger, like in Exercise A:

Now, a “tap on the green flag” (called an event) triggers the movement.
Students add the command instruction to their program and try out what it does in full screen
mode. The teacher tells them that the program is always executed in the same way. They show

how to exit full screen mode (icon).
The teacher asks the students to explore on their own what another event means, shown by
the following icon :

This will require (although the teacher does not say so) students to create a script, with the first
instruction being this icon, and they must figure out how to trigger this script without tapping
directly on the instruction block.
During the group discussion, the students share their conclusion: the event represented
by the finger touching a character is a “tap on the character.” The teacher explains that all
instructions in Scratch Junior are drawings to be easily understandable and that they should
try out instructions to see what they do.
The teacher shows the class how to save the programs: tap the upper right corner of the screen,
where you can see the corner of an orange book. Enter the file name in the blank field (have
students use basic names, such as “AP1” for Practice program 1, class group A), then validate
with the icon .

144 Pedagogical Module

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson.

For younger students:
•	 I give orders to a tablet using a programming language. The tablet always obeys the

orders.

For older students:
•	 We can give a machine instructions by using a special language called a programming

language.
•	 Instructions are put together in a program so the machine can perform them.
•	 If you launch the same program several times, it will always do the same thing.
•	 In Scratch Junior, the programs have one or several instruction blocks, called scripts.

The scripts are triggered by events, such as “tap on the flag” or “tap on a character.”

The students write down these conclusions in their science notebooks.

They then complete Handout 21: Using the correct color, they color in the instructions they
discovered during this lesson and add a few keywords: full screen, grid, start flag, programming
area, movement instructions, return to the starting position, turn, hop, events.

Teaching notes

•	 This handout will be used again in later lessons: the students will color in the instructions
as they learn them.

145

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 G

e
tt

in
g

 s
ta

rt
e

d
 w

it
h

 S
c

ra
tc

h
 J

u
n

io
r

L
e

v
e

l
2

 -
 S

e
q

.2

HANDOUT 21

The Scratch Junior programming screen

146 Pedagogical Module

Lesson 2 - The first episode:
Choosing the hero and controlling
his movements

Summary Students tell an episode of their hero’s adventure. While doing this, they
learn new Scratch Junior functionalities (deleting a character, importing a
new character, choosing a backdrop).

Key ideas
 (see Conceptual scenario, page 108) Same as Lesson 2.1, page 139

Equipment Same as Lesson 2.1, page 139
Glossary Instruction, event
Duration 45 min

Starting the activity

The teacher asks the students to remember the adventures of their hero or heroine: s/he
mysteriously woke up at the top of mountain and was able to make their way to a clearing.
On a tree trunk, they found a message and decoded it. This message had the hero follow the
river to the sea and find a treasure on the sea floor. The episode the students are going to tell
today using Scratch Junior is where the hero follows the river.

Choosing a hero and a backdrop (ideally in pairs)

Students must do the following: Replace the cat with another character (the hero or heroine
of the story), then replace the gray stage with a clearing and a river. Next, they must place the
hero on the riverbank (near the orange butterfly) and control his movements so he walks along
the river in the direction of the current. The hero must start by following a “stair-type” path
(the aim is to prepare for the introduction of loops in the next lesson), then go right.
After a few minutes, students who successfully complete the first part of the assignment present
their solution to the class on demonstration tablet: to delete the cat, you have to press on the
cat rectangle in the upper left part of the screen (character and object area) for several seconds
until a red X appears (see below), then tap this X.

Next, to select another character, tap the icon to see the options, scroll through the images
to find the hero the group wants to choose, tap the hero and validate at the top right (icon).

147

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 2

 -
 T

h
e

 f
ir

s
t

e
p

is
o

d
e

:
C

h
o

o
s

in
g

..
.

L
e

v
e

l
2

 -
 S

e
q

.2

Second grade class, Vanessa Guionie (Bergerac)

If certain groups have a hard time, students who have found the solution can show them how
they did it:

•	 You can see the stage options by clicking on the icon at the top of the screen, then
select and validate a stage just like for the characters.

•	 You can place the character wherever you like on the stage with a drag and drop. This
position is where the character will come back to when given the following instruction:

•	 To make the character walk along the river, several movement instructions must be
combined in the programming area. Depending on the chosen character, its size and
starting point, the instructions will differ slightly. For example, if the character is a child
or teen with the default size, and the character starts in square (row 10, column 11)
as here:

The program below can be used to get the expected result:

148 Pedagogical Module

The same program can also be written in a more concise manner (however, it can still
be improved, and this will be covered in the next lesson):

The teacher reminds the students how to save the programs and gives them a basic file name
format, such as “AH1” for group A, Hero story (reminder: the practice programs for group A
with a cat character are called AP1, AP2, etc.), then validate using the icon

Teaching notes

•	 If students notice the loops (in the orange instructions), tell them to remember how
they did it for the next lesson and to not share it with the rest of the class.

•	 To ensure that students have clearly identified the main objective of the lesson, which
is to learn to program, we suggest not drawing the stages or characters but to use
the preset options. The scenario for Sequence 1 (pages 110 and on) was designed
accordingly. However, if extending the lesson to an art or ICT class, you can use the paint
editor interface in Scratch Junior to customize the characters and stages.

Conclusion and lesson recapitulation activity

During this lesson, students will not have covered all of the new computer concepts, but will
have reinforced what they have already seen. Accordingly, they simply fill in their Scratch Junior

worksheet, coloring in the instructions they learned during this lesson with the appropriate
colors and adding a few keywords: choosing a stage, choosing a character, character list.

149

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 S

im
p

li
fy

in
g

 a
 p

ro
g

ra
m

 b
y

..
.

L
e

v
e

l
2

 -
 S

e
q

.2

Lesson 3 - Simplifying a program
by using loops

Summary The students continue learning to use Scratch Junior by exploring the
instruction «repeat...,» which is a loop. They practice anticipating what
a program given to them will do, combining loops and movement
instructions. Finally, they revise their initial program by replacing the
repeated instructions with loops.

Key ideas
 (see Conceptual scenario, page 108)

“Algorithms”
•	 A loop is used to repeat the same action several times.
•	 Certain loops are repeated a specific number of times.

Equipment Same as Lesson 2.1, page 139
Plus, for each student

•	 Handout 22, page 152
Glossary «Repeat...» loop
Duration 1 hour

Starting the activity

The teacher tells the class they are going to take a break from the story to learn a new type of
instruction that they can use in their stories later.
They put the saved program from the end of the previous lesson on the board (either with the
projector or written):

This program has only 11 basic instructions, but it takes up a lot of space in the programming
area. If they want to keep telling the story, the program may become very long and complicated.
The teacher tells them that today they are going to learn to identify instructions that are
repeated to simplify them. To do this, they will use an orange instruction which is available
after tapping on the icon :

This instruction is like a bridge above one or more instructions. The students will have to
experiment to understand what it means. They will then be ready to simplify the script that
controls their hero’s movements.

Activity (ideally in pairs)

The teacher gives the students two assignments (one after the other):
- They must first use the “orange bridge” instruction to make the cat move in a stair step

direction (one step right, one step up, one step right, one step up, etc.). The cat must
start in square (row 3, column 3) and “climb 7 steps” when you tap on the green flag.

- Once the first assignment is completed, the must then use the “orange bridge”
instruction to have the cat move all around the stage three times in a row (starting
from square (row 3, column 3).

150 Pedagogical Module

Teaching notes

•	 You can have students place the two previous scripts in the same programming area
and have them triggered by different events: “tap on the flag” and “tap on the cat.”

•	 An alternative option is to create a new character and assign one script to the cat and
the other to the new character, both triggered by whichever events the students want.

Group discussion

For the first challenge, a correct program that follows all directions is:

The teacher asks the students if they figured out what the orange instruction that looks
like bridge does. The class concludes that this instruction requires the instruction block it
encompasses to be repeated the number of times indicated on the instruction. The class gives
this instruction a name, such as “Repeat...” If the students do not talk about loops on their own,
the teacher reminds them about this term by referring to the previous sequence (Lessons I.5,
page 129 and I.6, page 134). The teacher explains that they can include a loop each time the
instructions are repeated.
For the second challenge, a correct program that follows all directions is:

The students save their second practice program as “AP2” (for class group A) and “BP2” (for
class group B).

Exercise (individually within small groups)

The teacher puts up a simple program on the board using loops and movement instructions:

They ask the students what the character will do if they start the program. The students must
trace the character’s movements on a grid (Handout 22, page 152).
During the group discussion, the students compare their answers (especially the destination
row and column), and check them as a class by launching the program. The path followed by
the cat is the following:

151

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 S

im
p

li
fy

in
g

 a
 p

ro
g

ra
m

 b
y

..
.

L
e

v
e

l
2

 -
 S

e
q

.2

Simplifying the program controlling the hero’s movements

(ideally in pairs)

To finish the lesson, the students apply what they learned to simplify their program from
Lesson 2.1 (page 139), which controls the hero’s movements. The original program (given
above) becomes:

The teacher reminds the students to save their modified program, without changing the file
name (e.g., AH1 for group A).

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson.

For younger students:
•	 A loop is used to repeat the same instruction several times.

For older students:
•	 A loop is used to repeat the same instruction several times.
•	 Certain loops are repeated a specific number of times.

The students write down these conclusions in their science notebooks.
The students then complete their Scratch Junior worksheet: they color in the instruction they
learned in this lesson in orange and add a few words: “Repeat...” loop, number of repetitions.

152 Pedagogical Module

Instruction

The cat is in square (row 3, column 3). It follows the instructions of the following
program:

Draw its entire path on the grid below and circle the square where he ends up:

HANDOUT 22

Understanding a program with a loop

153

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 C

o
o

rd
in

a
ti

n
g

 s
e

v
e

ra
l

s
c

ri
p

ts
L

e
v

e
l

2
 -

 S
e

q
.2

Lesson 4 - Coordinating several
scripts

Summary Students tell a new episode of their hero’s adventure, with more autonomy
than in the first lessons. They discover new functionalities in Scratch Junior

and deepen their understanding of what a sequence of instructions and a
program are.

Key ideas
 (see Conceptual scenario, page 108)

«Algorithms»:
•	 Basic instructions can be performed one after the others.
•	 Instructions can start at the same time if they are triggered by the

same event.
Equipment Same as Lesson 2.1, page 139
Glossary Sequence of instructions
Duration 45 min

Starting the activity

The teacher tells the students that the hero has arrived at the sea after following the river.
Today, the students are going to program another episode of his adventure, where he uses a
submarine to find the treasure at the bottom of the sea.

Teaching notes

•	 Scratch Junior does not have a submarine in its preset characters. The students can
replace it with a marine animal, such as a seahorse (which we have done here), or you
can use time during an art or ICT class to let them draw their own submarine using the
integrated paint editor tool in Scratch Junior.

Activity (ideally in pairs)

The teacher gives the students their programming assignment: In the same program from the
last lesson (AH1 or BH1, depending on the group), they must add a new stage (the characters are
listed on the left, stages on the right) – the seashore, at night, with a large dock. The students
must import two characters: the same hero as in the clearing and a seahorse.

Using this stage, they must then:
- Place the hero on the dock, near the edge of the water.
- Place the seahorse in the water, near the other side of the dock, but hidden (this

instruction can be found in the list of purple instructions).
- Control the hero’s movements to the end of the dock.
- Make the seahorse appear and come towards the hero when the hero gets to the

end of the dock.

154 Pedagogical Module

When the programs have been executed, the scene should look like this:

The teacher lets students play around with the software,
offering as little help as possible so problems emerge.

Second grade class, Vanessa Guionie (Bergerac)

If necessary, show certain commands to the class using the demonstration tablet, but the first
steps are very similar to what students already saw in Lesson 2.1 (page 139) and should not
cause too much difficulty.
To add a new stage, click on the icon on the right side of the screen in the stages area,
then select and validate it. To delete the cat that initially appears in the scene and add two
new characters (the hero and seahorse), follow the same steps as in Lesson 2.2 (page 146). To
position the characters, use a finger to drag them where you want them to go.
Once the character is added to the program, you can have it appear and disappear whenever
you want. To do this, use the following two pink instructions: Generally speaking, the students
will notice that the pink instructions control the appearance of the characters.

155

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 C

o
o

rd
in

a
ti

n
g

 s
e

v
e

ra
l

s
c

ri
p

ts
L

e
v

e
l

2
 -

 S
e

q
.2

The main difficulty lies in having the seahorse appear when the hero gets to the end of the dock.
There is no preset event called “the hero gets to the end of the dock” to trigger the program
that makes the seahorse appear. The students may suggest several options:

• One is to trigger the program that makes the seahorse appear and the program that
controls the hero’s movement with the same event, but adding a delay to the start
of the seahorse program with the following orange instruction:

The delay can be set by modifying the “10” value (this is not 10 seconds, but the
time it takes to make 10 steps, so you have to play around with it to get the seahorse
to appear at the right time).
The teacher tells the students that if they modify the hero’s program, they’ll have
to adjust the delay as well, which takes more time.

• Another option is to control the hero’s movement using a “finger tap” command,
and to control the seahorse with a “tap on the green flag” command.

• The teacher gives students a final option: the program to make the hero move sends
a message at a particular time, and when the message is received, it triggers the
seahorse to appear. The yellow instructions below will give you this result.
“Send blue message” event (there are five other possible message colors):

Trigger a script with the “Blue message received” event:

You will get, for example, the following programs for the hero and seahorse,
respectively:

Note that tapping the green flag triggers two scripts: moving the hero and hiding the
seahorse. Also note that the messages are sent “publicly.” In other words, several
scripts can be triggered by sending the same message.

Teaching notes

•	 It is rather difficult to make the character walk precisely along the dock. Tell the students
that they should do their best but that it does not need to be perfect.

156 Pedagogical Module

Group discussion

During the group discussion, the teacher goes over any difficulties students had, particularly
regarding timing.

They then switch to full screen mode to show the class that you can go from one episode of the
story to another by using the small arrows . To launch each episode, you have to tap
the green button. Finally, the hero is not always where he should be when you get to screen 2.
The teacher shows a red instruction that automates moving from one stage to another:

It should be placed as the last instruction for the hero, on stage 1, and command the transition
to stage 2. The students add this instruction to their program, then save it as AH2 (group A)
or BH2 (group B).

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:

For younger students:
•	 Scripts are triggered by events. Within a program, a single event can trigger several

scripts at once.

For older students:
•	 Within a script, basic instructions are executed one after another, from left to right.
•	 Within a program, several scripts can start at the same time, if they are triggered by a

single event.

Students write down these conclusions in their science notebook. They then complete their
Scratch Junior worksheet by coloring in the instructions they learned during the lesson and
writing down the key words: pause, appearance and disappearance, sending and receiving
messages, changing stages.

157

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 5

 -
 P

re
d

e
fi

n
e

d
 l

o
o

p
s

 a
n

d
 i

n
fi

n
it

e
..

.
L

e
v

e
l

2
 -

 S
e

q
.2

Lesson 5 - Predefined loops and
infinite loops

Summary Students tell a new episode of their hero’s adventure. They reinforce the
key ideas from the previous lessons, namely predefined loops, and learn
about infinite loops.

Key ideas
 (see Conceptual scenario, page 108)

«Algorithms»:
•	 Certain loops are repeated forever.

Equipment Same as Lesson 2.1, page 139
Glossary Infinite loop
Duration 1 hour

Starting the activity

The teacher reminds the students that the hero, who cannot reach the treasure he can see at
the bottom of the sea on his own, must guide a submarine, represented here by a seahorse.
The seahorse brings the treasure to the surface. Today, the students are going to program this
episode of the hero’s story.

Activity (ideally in pairs)

The teacher gives students their programming assignment: in the same program as the last
time, they must add a new stage that appears once the seahorse is visible in the sea. In this
scene, they must add a “decorative” animal of their choice. It will not participate directly in
the story and its movements will repeat through the scene. For a script to repeat forever, they
must place the following red instruction at the end of the script:

The students must then make the seahorse appear and go to get the treasure by making back
and forth movements to the left and right, descending gradually. The treasure is in a chest at
the bottom of the sea. When the seahorse touches it, both go back up to the surface at the
same time. To trigger a script when two characters touch, the following yellow instruction
must be used:

As during the previous lesson, the teacher lets students play around with the software, offering
as little help as possible so problems emerge. If necessary, you can show several commands
to the class using the demonstration tablet, but students should be increasingly independent.
However, you should remind them to save their programs with the names AH3 or BH3
(depending on their group).

Teaching notes

•	 You can pre-program each tablet with part of the lesson and have students complete
or modify the program.

158 Pedagogical Module

Group discussion

During the group discussion, the teacher goes over any difficulties students had. For example,
if the seahorse’s ascent is triggered when it touches another character, the “decorative” animal
must not touch the seahorse while it descends. The students must choose the seahorse’s
positions and movements so as to avoid the two coming into contact. Here are a few programs
for each character (seahorse, treasure chest and decorative fish) that follow the directions, but
students will come up with a variety of solutions.

The initial positions that are compatible with these programs are:
• Seahorse: (row 14, column 4)
• Treasure chest: (row 2, column 3)
• Decorative fish: (row 12, column 18)

An intermediate view of the scene looks like this:

Teaching notes

•	 Some students will use instructions the class has not yet seen (especially as the Scratch
Junior worksheet provides a preview of all commands). At this point, when they begin
to have a good understanding of the software, it is important to let them express their
creativity. But to help them continue learning, the teacher should encourage them to
regularly test their programs. It is much more difficult to detect a bug in a program
written as a block without tests than in a program that has been tested throughout
the writing process.

159

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 5

 -
 P

re
d

e
fi

n
e

d
 l

o
o

p
s

 a
n

d
 i

n
fi

n
it

e
..

.
L

e
v

e
l

2
 -

 S
e

q
.2

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 A loop is used to repeat the same instruction several times.
•	 Certain loops are repeated forever.

The students write down this conclusion in their science notebook and complete the Scratch
Junior worksheet by coloring in the new instructions they learned and writing down a few
key words: “touch another character” event, infinite loop.

160 Pedagogical Module

Lesson 6 - Adding recorded
dialogues to the program

Summary Students learn to record character dialogues.

Key ideas
 (see Conceptual scenario, page 108) All previously covered key ideas

Equipment Same as Lesson 2.1, page 139
Duration 45 min

Starting the activity

The teacher tells the students they are going to add sound recordings to their stories.

Teaching notes

•	 To facilitate this lesson, the text can be created ahead of time by the students during
a writing class. The recordings can be done during an ICT class (rather than during a
science class).

Recording procedure (as a class)

The teacher shows the students how to record a message for a particular character: select the

character from the left side of the screen, then go to the green instructions using the icon

and tap on the command to create a new recording:

The following mini window opens:

Recording begins as soon as you tap on the red dot and ends when you tap on the gray square
(which then flashes orange). You can immediately listen to the recording by tapping on the
gray arrow, and start again if necessary by tapping on the red dot. When you are happy with
the recording, validate using the usual icon at the top right of the mini window.
Now, the recorded sound will appear in the list of sounds for the active character (here, it is
sound no.1):

You can record all sounds for each character separately, making sure to save each recording
for the right character. We recommend limiting the number of dialogues, recording all of the
sounds first, then adding them to the programs.

161

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 6

 -
 A

d
d

in
g

 r
e

c
o

rd
e

d
 d

ia
lo

g
u

e
s

 t
o

..
.

L
e

v
e

l
2

 -
 S

e
q

.2

Timing the dialogues (ideally in pairs)

Once the recordings are all done and the program has been saved, the students must create
a dialogue on their own. They save the new program with the same name as before, either
AH3 or BH3.

Teaching notes

•	 There are several ways to coordinate the dialogues, or more generally, the actions of
several characters. The most intuitive way is to add the pause instructions and adjust
the duration as you go (the duration of each pause will depend on those in the audio
recordings).

•	 However, adding pause instructions to suit the program timings can be problematic
as the pause durations do not adjust automatically if a recording is changed or if
instructions are added in a program. Another more comprehensive approach, which
was seen in Lesson 2.4 (page 153), consists in sending messages.

•	 While we would like students to figure out this solution, it is important to let them start
by adding pauses if they think of this first.

•	 We do not recommend adding text to the story as typing in text on a tablet can be
cumbersome. However, if the teacher prefers adding text over recordings, the instruction
blocks to do so are pink.

Conclusion

To conclude the lesson, students complete the worksheet for Scratch Junior, coloring in the
instructions they learned during this lesson and adding key words: new sound, pre-recorded
sound.

162 Pedagogical Module

Lesson 7 - Producing the final
episode autonomously

Summary Students work on their own to tell the last episode of their hero’s
adventure. They cover the key ideas from the entire sequence and finish
their program.

Key ideas
 (see Conceptual scenario, page 108) All previously covered key ideas

Equipment Same as Lesson 2.1, page 139
Duration 1 hour

Starting the activity

The teacher tells the students that they can tell the last episode almost however they like with
Scratch Junior. There is only one condition: they must use events to coordinate their characters
and use loops. The teacher suggests that they try and not be overly ambitious to start with and
to add elements to their story if they have time at the end. In particular, any sound recordings
should be done last, with students focusing on structuring their programs first.

Creating the episode (ideally in pairs)

The students talk in pairs about the essential elements to include in the last episode. Which
characters? Which stage? Which events to trigger the characters’ actions?

Programming the episode

After approval from the teacher, who checks with that the students that their plan is realistic,
the students program the last episode. The teacher walks around to all the groups to make
sure they are making progress.
The teacher checks that the students remember to link stages 3 and 4.
Here are a few examples of programs that tell the final episode of the story. The selected stage
is a beach at sunset (orange colored). The story is a bird that goes to find the magician, who
conjures up a cake and sends it to the hero. The hero eats the cake and slowly gets farther
away (he returns home).
These programs are already rather complex (only older students will likely manage to produce
them without help):

163

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 7

 -
 P

ro
d

u
c

in
g

 t
h

e
 f

in
a

l
e

p
is

o
d

e
..

.
L

e
v

e
l

2
 -

 S
e

q
.2

The initial positions that are compatible with these programs are:
•	 Hero: (row 5, column 3)
•	 Magician: (row 6, column 17)
•	 Bird: (row 12, column 2)
•	 Cake: (row 9, column 10)

Teaching notes

•	 With Scratch Junior, the positioning, disappearance and scaling of characters is rather
slow. The characters will appear differently than desired for a couple seconds when the
program is launched and when stages change. The more advanced version, Scratch, will
let students in grades four and up achieve a better result.

•	 This program can be enhanced with sound messages, sound effects, etc.

Conclusion: Class presentation

To conclude the lesson, each group of students shows their final episode to the class. The
students talk about the programs they are most proud of or those that were most difficult to
figure out. They can also share any difficulties they could not solve and see if the class can help
find a solution.

Further study

Now that students have learned to program on Scratch Junior, they can use their skills to create
other projects during the year, such as animated cards for Christmas, Mother’s Day, etc.

164 Pedagogical Module

Sequence 2a: Alternative with Scratch
This sequence is an alternative to Sequence 2 (pages 139 and on) and deals with programming
an animation to tell the hero’s adventure from Sequence 1.

Scratch instead of Scratch Junior?

As already discussed above, for grades one through three, it is preferable to learn to program
on tablets using Scratch Junior (see explanations on page 137). However, if your school does not
have tablets but does have computers, you can use Scratch12 (available at no cost for Windows,
Mac and Linux operating systems).

An intermediate sequence for grades three and up

Because this is not our recommended solution, we have created this lesson plan with fewer
details. However, it has been successfully tested with several third grade classes (it should not
be done with first or second grade classes). Students should already have keyboard and mouse
skills before starting this work.

This sequence draws from the scenario in the Level 2 activities (Sequence 2, page 139), but
uses the tools recommended for Level 3 activities (Sequence 2, page 229).

The teacher can opt for one of the following:
•	 Have the class tell the hero’s entire story in Scratch (as we suggest in Sequence 2 using

Scratch Junior)
•	 Have students tell only one episode of the hero’s story
•	 Have different groups each tell a different episode. The programs created by the different

groups can be linked together to tell the entire adventure. However, this can only be
other by copying the different programs “by hand.”

Whichever option is chosen, the class will start with the same introductory steps in Scratch,
which are a review of the first lessons described in detail for grades four and up (pages 229
and on).

Working in half-groups

Ideally, there should be one computer for each student pair. To do this and make it easier to
manage the class during the programming activities (during which the teacher will have to
work closely with students), half the class can work independently on exercises not requiring
assistance from the teacher while the other half of the class can work on the project. Then,
the teacher can have the groups switch roles (A and B in the following lessons).

12 Scratch is available either online (without prior installation, but this requires a good internet connection,
at the address: https://scratch.mit.edu) or offline (requiring prior installation, after downloading the
software at the address: https://scratch.mit.edu/scratch2download).

165

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
A

lt
e

rn
a

ti
v

e
 w

it
h

 S
c

ra
tc

h
L

e
v

e
l

2
 -

 S
e

q
.2

a

Preparing the working environment

In order to save time, it is good to prepare the working environment in advance:
•	 Scratch must be installed on all computers (or accessible online)
•	 A shortcut to Scratch should be placed on the desktop
•	 Similarly, a dedicated folder for the project (and the class) should be easily accessible,

either on the desktop or on a USB flash drive for the group.

Doing the project yourself first

It is very important for the teacher to spend two hours, during their lesson preparation
time and before the first programming lesson, to get familiar with Scratch and do the same
tasks the students will do during the project. Otherwise, they may not be able to help the
students when they need it.
To be prepared, simply follow the lessons in this sequence.

Lesson Title Page Summary

Lesson 1 Introduction to the
Scratch programming
environment

166
Students are introduced to Scratch, an easy-to-use
graphic programming environment.

Lesson 2 Making a character
move 168 Students explore the ways to control a character’s

movements.
Lesson 3 Choosing the hero

and controlling his
movements 170

Students tell the first episode of their hero’s adventure,
where he comes out of the forest and follows the river
to the sea. During this time, they cover the key ideas
from the previous lesson (set of instructions, event),
learn about the idea of initialization and use predefined
loops («repeat…»).

Lesson 4 Programming several
sprites

174

The students tell another episode of the hero’s
adventure, where he sees the treasure at the bottom of
the sea and gets help to retrieve it. To do this, students
learn to load a new stage, add a sprite and cover the
key programming ideas from the first two lessons.

Lesson 5 Coordinating the first
two episodes

177

Students must figure out how to make the two first
episodes continue one after the other. To do this,
they learn the key idea of message: a message can be
sent during an instruction, and when the message is
received, it can trigger one or more instructions.

Lesson 6 Different types of loops

179

Students tell the next episode of the hero’s adventure:
the octopus goes to the bottom of the sea to get the
treasure and bring it back to the surface. They reinforce
the key ideas from the previous lessons, namely
predefined loops, and learn about infinite loops.

Lesson 7 Producing the final
episode autonomously 181

Students work on their own to tell the last episode of
their hero’s adventure. They cover the key ideas from
the entire sequence and finish their program.

166 Pedagogical Module

Lesson 1 - Introduction to
the Scratch programming
environment

Summary Students are introduced to Scratch, an easy-to-use graphic programming
environment.

Key ideas
 (see Conceptual scenario, page 108)

“Machines” and “Languages”
•	 We can give a machine instructions by using a special language

called a programming language, which can be understood by both
people and machines.

•	 An «algorithm» is a method to resolve a problem.
•	 A program is an algorithm in a programming language.

Equipment For the class
•	 (Recommended) A computer on which the Scratch software has

been installed and a video projection system.

For each student pair
•	 A computer on which the Scratch application has been installed2.

For each student
•	 Handout 32, page 242 (this handout will be used again in the

other lessons)

Glossary Program, script, character, stage, instruction, event
Duration 1 hour

Foreword

As explained earlier, the first few lessons of this Level 2 Scratch sequence reviews certain
activities described in detail in the Level 3 activities. We will not rewrite everything here and will
frequently refer back to the relevant Level 3 lessons. Before continuing, we strongly recommend
that teachers read at least the first three lessons of the Level 3 Scratch sequence (and to do
the activities themselves ahead of time).

The general scenario of this Sequence 2a is very similar to that for Level 2, Sequence 2, except
that we use Scratch instead of Scratch Junior. Where Scratch instructions are concerned, we
will again refer back to the relevant lessons rather than rewrite everything here.

Teaching notes

•	 You learn to program by programming, not by watching someone program. It is
interesting to consider the same problem in pairs (probably more so than to program
alone), but it is important to be active. We therefore recommend placing the students in
small groups in front of computers (ideally two students per machine) and asking them
to “switch over” (pass the keyboard and mouse to their neighbor) every 10-15 minutes.

•	 If possible, we recommend organizing the class in half-groups, so as to avoid having too
many pairs to manage at once. While half the class works on Scratch, the other should
do something else independently.

•	 If possible, two Scratch lessons should be organized weekly, at least at the beginning.

167

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 I

n
tr

o
d

u
c

ti
o

n
 t

o
 t

h
e

 S
c

ra
tc

h
..

.
L

e
v

e
l

2
 -

 S
e

q
.2

a

•	 This step of getting to know Scratch is deliberately very directive (it starts with a
demonstration by the teacher). It is the only step presented in this form. All pairs will
have to carry out a series of basic tasks. At the end of each task, a group discussion
ensures that everyone has understood and knows what to do. The other steps will be
less directive, as students become more independent and progress at their own pace.

•	 To save time, switch on the computers before the lesson begins.

Starting the activity

The teacher explains to the students that they are going to use a computer to tell the main
episodes of their hero’s adventure. To do this, they must program the computer, i.e., tell it
what to do. They will have to use a special language, called a programming language, which
can be understood by both the students and the computer. The language they are going to use
is called Scratch. Today and in the next lesson, they will get familiar with Scratch, and from the
third lesson, they will start programming the story.

Opening Scratch and getting to know the interface

After a quick presentation of Scratch, the students explore the software on their own, then
do a few simple exercises. See Level 3 Lesson 2.1 of the Scratch Sequence (page 234), and
particularly the following tasks:

•	 Activity 1: Demonstration of Scratch, showing the different elements (stages, sprites,
backdrops, the script tab) and basic actions (sliding instructions into the programming
area, combining instructions as scripts, deleting instructions). The teacher gives students

Handout 32, which the students will color in as they progress through the sequence.
•	 Activity 2: Exploring Scratch (page 238). The students learn about the various instruction

categories (“motion,” “looks,” “events,” “control,” etc.).
•	 Activity 3: Getting comfortable with the interface through seven short exercises (page

239).

168 Pedagogical Module

Lesson 2 - Making a character
move

Summary Students explore the ways to control a character’s movements.
Key ideas
 (see Conceptual scenario, page 108) Same as for the previous lesson

Equipment Same as for the previous lesson
Plus, for each student:

•	 Handout 32, page 242
Glossary
Duration 1 hour

During the previous lesson, students worked with the Scratch interface to become more
comfortable with its features. They will now learn how to move the sprites where they want
them by practicing on the cat sprite.

Teaching notes

•	 At this stage, students will still need assistance. As they use the software, they will
become more independent and each pair will advance at their own pace.

Challenges: Controlling the cat’s movements

(ideally in pairs)

The previous exercises will have taught students how to make the cat move to the right. Now,
they need to learn to make it move in any direction.
First, students should have the cat move to the left (see Activity 1, page 236). Having the cat
move to the left is slightly more difficult as students must have the cat turn left, then move
forward.
They should work independently and experiment while the teacher goes from group to group
to help when needed. The teacher can guide them by suggesting they find an instruction to
“point in direction”.

The students test the effect of a block of two instructions, “point in direction” and “move 10
steps”, depending on whether the “point in direction” instruction says 90, -90, 0 or 180.
The teacher should also encourage students to click on the sprite’s information icon (the “i” in
a blue circle) and to try out the three rotation options.

169

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
 L

e
s

s
o

n
 2

 -
 M

a
k

in
g

 a
 c

h
a

ra
c

te
r

m
o

v
e

L
e

v
e

l
2

 -
 S

e
q

.2
a

They can turn the sprite by using the blue “direction” line. Whenever the “point in direction”
instruction is used, this blue line is updated. You can exit the information mode by clicking on
the small blue “back” arrow in the blue circle.

The students can then figure out how to complete the challenge: by combining the “point in
direction -90” and “move 10 steps” instructions.

With these new tools, the students can now answer the initial question of how to move the
cat in any direction (see Activity 2, page 238).

Conclusion and lesson recapitulation activity

During this lesson, students will not have covered all of the new computer concepts, but
will have reinforced what they have already seen. Accordingly, they complete their Scratch

worksheet (see the previous lesson) by using the appropriate color to color in the instructions
they learned during this lesson.

Third grade class, Emmanuelle Wilgenbus, Antony

170 Pedagogical Module

Lesson 3 - Choosing the hero
and controlling his movements

Summary Students tell the first episode of their hero’s adventure, where he comes
out of the forest and follows the river to the sea. During this time, they
cover the key ideas from the previous lesson (sequence of instructions,
event), learn about the idea of initialization and use loops.

Key ideas
 (see Conceptual scenario, page 108)

“Algorithms”
•	 A loop is used to repeat the same instruction several times.
•	 Certain loops are repeated a specific number of times.

Equipment Same as for the previous lessons

The teacher should have prepared the workstations by copying the
Scratch files (extension .sb2) available on the project website (see page
342).

Glossary Initialization, «Repeat...» loop
Duration 1 hour

Starting the activity

The teacher asks the students to remember the adventures of their hero or heroine: s/he
mysteriously woke up at the top of mountain and was able to make their way to a clearing.
On a tree trunk, they found a message and decoded it. This message had the hero follow the
river to the sea and find a treasure on the sea floor. The episode the students are going to tell
today using Scratch is where the hero follows the river.

Choosing a hero and controlling his movements

(ideally in pairs)

Students open the prepared file “2-2a_river.sb2” using Scratch. The stage shows a forest, a
clearing and a river so the students can program the episode where the hero follows the river.
A sprite is already there: the hero. He is positioned on the left side of the screen at the edge
of the forest.

The students begin by choosing the main character of the story from among three heroines
and three heroes. To do this, they must:

•	 Select the “hero” sprite by clicking on him in the “Sprites” area:

171

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 C

h
o

o
s

in
g

 t
h

e
 h

e
ro

 a
n

d
..

.
L

e
v

e
l

2
 -

 S
e

q
.2

a

•	 Click on the “Costumes” tab to bring up the six possible characters

•	 Drag their chosen costume to the first position and delete any costumes they do not
need using the small gray X that appears when they are selected.

•	 Go back to programming by clicking on the “Scripts” tab.

Once they have completed this task, the students must control the hero’s movements to make
him go to the river and follow it to the lower right corner before he then disappears. The
movements should be triggered by a click on the green flag.

The students should use only the instructions that are already in the character programming area
(there may be copies of some of them, in which case they will need to find these instructions
from the list in the center of the screen, or do a right-click copy). They do not have to use all
the instructions.

The instructions they can use are the following (the values can be changed):

Group discussion

One student pair presents their solution on the demonstration computer. Based on this
presentation, the class discusses the difficulties they encountered and share their solutions.
There may be as many suggestions as there are pairs, but one option is as follows:

172 Pedagogical Module

Teaching notes

•	 We chose six characters ahead of time instead of having students choose from the vast
selection of Scratch sprites so that the characters all have similar sizes, the same starting
direction and to spend more time on programming rather than endless conversations
about which character to choose. However, it is possible to let students create their
own character during art or ICT class using Scratch editing tools, or modify an existing
character.

•	 Students will often think they can control their hero’s movements with a single
instruction, such as “move 400 steps.” But they will see that the movement is nearly
instantaneous and not realistic. They will then come up with the idea of making small
moves, perhaps using the “repeat...” instruction. However, if students do not use the
instruction “wait...secs” between two successive moves, the problem remains the same.

•	 Students generally think to use the “hide” instruction so that the character disappears
at the end of the program, but when they try and relaunch the program, their character
does not appear. It stays in “hidden” mode, because no instruction has been given to
appear. This problem is easily fixed by adding a “show” instruction at the start of the
program. This instruction is an initialization, giving the initial situation, such as the
instruction “point in direction 90.”

•	 Similarly, if the students place their character on the edge of the forest by clicking and
dragging it onto the stage, without adding this initial position to the program with an
instruction, the character will leave from this position the first time, but will not go back
when the program is restarted. This is the point of adding the instruction “go to x: … y:
…” at the start of the script. This instruction is also an initialization. Note that manually
positioning the character does have its use: the instruction “go to x: … y: …” uses the
values x and y corresponding to this position, and there is no longer a need to place
this instruction in the programming area to use it.

•	 The teacher guides the discussion to the purpose of the instruction “repeat…” and

173

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 C

h
o

o
s

in
g

 t
h

e
 h

e
ro

 a
n

d
..

.
L

e
v

e
l

2
 -

 S
e

q
.2

a

brings up the term “loop,” discussed in Lessons I.5 (page 129) and I.6 (page 134) in the
previous sequence. The teacher asks where the repeat instructions must be placed:
they must be placed within the “repeat…” instruction. The teacher points out that in
this type of loop, you have to decide ahead of time how many times you want to repeat
the instructions: the number of repetitions are defined in advance, or predefined.

The groups can modify their initial suggestion after the group discussion, such as by using a
loop if they had not already. The teacher also shows the class how to save the program (File,
Save As, location) and imposes the name: A1 or B1 for this first episode, depending on whether
the students were in half-group A or B.
The file “2-2a_river_correction_lesson_3.sb2” provides an example of the result after this lesson

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 Certain instructions are used to indicate an initial value: these are initialization

instructions, or initializers.
•	 A loop is used to repeat the same instruction several times. Certain loops are repeated

a specific number of times.

The students write down these conclusions in their science notebooks. They then complete
their Scratch worksheet by using the appropriate color to color in the instructions they learned
during this lesson and a few words: predefined loop, pause.

174 Pedagogical Module

Lesson 4 - Programming several
sprites

Summary The students tell another episode of the hero’s adventure, where he sees
the treasure at the bottom of the sea and gets help to retrieve it. To do
this, students learn to load a new stage, add a sprite and cover the key
programming ideas from the first two lessons.

Key ideas
 (see Conceptual scenario, page 108)

“Algorithms”
•	 Instructions can start at the same time if they are triggered by the

same event.

Equipment Same as for the previous lessons
Glossary
Duration 1 hour

Starting the activity

The teacher asks the students what happens to the hero once he has followed the river to the
sea. They remember that the hero sees the treasure at the bottom of the sea and commands a
submarine to collect the treasure. The teacher tells the students they will program this episode
today.

Changing a stage and adding a sprite (as a class, then in

pairs)

First, the teacher shows the class how to load a new stage on the demonstration computer
(see Level 3, Lesson 2.2, Activity 2, page 244). Click on the current stage (the river), click
the “backdrops” tab and load a backdrop from a file (the backdrop file we supply is called
“landscape_dock”). The students repeat these actions on their own computers.
The teacher then shows them how to load a new sprite from the Scratch library. Since there
is no submarine, the teacher can choose an octopus, for example, with approval from the
students. The students also load the “octopus” sprite
on their computers.
The teacher shows the class that the stage and each
sprite each have their own programming area. To
create a program for a particular sprite (or for the
stage), select the sprite (or stage) by clicking the
Sprites area (or the Stage area).
The teacher explains that for the time being, the
script for the river episode will be inactivated: to
do this, separate the entire instruction block for the
“When green flag clicked” trigger event, like this:
We will deal with reapplying these instructions later
(next lesson). The students inactivate the script.

175

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 P

ro
g

ra
m

m
in

g
 s

e
v

e
ra

l
s

p
ri

te
s

L
e

v
e

l
2

 -
 S

e
q

.2
a

Programming the episode (in pairs)

Now, the students will program the new episode: the hero must go to the end of the dock,
where he meets the octopus swimming back and forth (left to right). When the hero arrives
at the end of the dock, the octopus stops near him. After they talk for a while, the octopus
disappears (it goes to find the treasure).

Teaching notes

•	 We suggest letting students find the instructions to use themselves, because most of
them have been used in the previous lesson. However, if they encounter any major
difficulties, remind them of the useful instructions.

Group discussion

During the group discussion, one group of students presents their solution. Based on this
presentation, the class discusses the difficulties they encountered and the solutions they
found.
One possible solution is as follows, without the dialogues (to the left, the hero’s program and
to the right, the octopus’s program, as indicated by the sprite shown at the upper right of the
programming area):

Hero program

Octopus program

Teaching notes

•	 Few students will remember to initialize the sprite’s position at the start of the program.
Cover this idea again if necessary: “How did we make the hero stay visible at the start
of the river episode?”, “How did we make the hero stay at the edge of the forest at the
start of the river episode?” To do this, simply indicate the desired values of the X and
Y coordinates using the “go to x: … y: …” instruction).

•	 Few students will think to choose how the octopus turns. For example, it will end up
upside down when it moves left.

•	 The teacher can introduce the instruction “Glide...secs to x: … y: …” to simplifying the
octopus’s program (the version above includes nested loops. This gives you:

176 Pedagogical Module

The file “2-2a_dock_correction_lesson_4.sb2” provides an example of the result after this
lesson.

Conclusion and lesson recapitulation activity

No new key ideas were covered during this lesson, but students will have learned about new
Scratch instructions. They complete their Scratch worksheet by coloring in the new instructions
and adding a few keywords: selected sprite, loop.

177

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
C

o
o

rd
in

a
ti

n
g

 t
h

e
 f

ir
s

t
tw

o
 e

p
is

o
d

e
s

L
e

v
e

l
2

 -
 S

e
q

.2
a

Lesson 5 - Coordinating the first
two episodes

Summary Students must figure out how to make the two first episodes continue one
after the other. To do this, they learn the key idea of message: a message
can be sent during an instruction, and when the message is received, it
can trigger one or more instructions.

Key ideas
 (see Conceptual scenario, page 108)

“Algorithms”
•	 Instructions can start at the same time if they are triggered by the

same event.
Equipment Same as for the previous lessons.
Glossary Script, event
Duration 45 min

Starting the activity

The teacher reminds the students that for the time being, the hero’s program (the river episode)
is deactivated (no event will trigger it). However, now we want the two story episodes to follow
one after the other. This is what they will be doing today.

Activity (ideally in pairs)
The teacher tells the students the instructions they must use:

The teacher lets them decide on their own how to include them in their program to get the
expected result.

Group discussion
The group discussion lets students discuss any difficulties they encountered and the solutions
they found. The easiest solution is the following:

In the stage programming area, the stage is
initialized for the beginning of the story:

178 Pedagogical Module

At the end of the hero’s first script (which marks the end of the river episode), add the instruction
“Switch backdrop to Landscape_dock.”
Trigger the hero’s script for the river episode with the event “When green flag clicked.”
Trigger the hero’s and octopus’s scripts for the dock episode using the backdrop switch event
by placing the instruction “When backdrop switches to Landscape_dock” at the start of these
scripts.
The initializers must also be added, namely to hide the octopus when the green flag is clicked
and resizing the hero to 100%.
The file “2-2a_dock_correction_lesson_5.sb2” provides an example of the result for the first
two episodes (when the river and dock episodes are connected).

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 Scripts are triggered by events. Within a program, a single event can trigger several

scripts at once.
Students write down these conclusions in their science notebook. They then complete their
Scratch worksheet by coloring in the instructions they learned during the lesson and writing
down the key words: broadcasting messages, “when I receive message” event.

179

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 6

 -
 D

if
fe

re
n

t
ty

p
e

s
 o

f
lo

o
p

s
L

e
v

e
l

2
 -

 S
e

q
.2

b

Lesson 6 - Different types of
loops

Summary Students tell the next episode of the hero’s adventure: the octopus goes
to the bottom of the sea to get the treasure and bring it back to the
surface. They reinforce the key ideas from the previous lessons, namely
predefined loops, and learn about infinite loops.

Key ideas
 (see Conceptual scenario, page 108)

“Algorithms”:
•	 Certain loops are repeated forever.
•	 Certain loops are repeated until a condition is met.

Equipment Same as for the previous lessons
Glossary Infinite loop
Duration 1 hour, plus 30 minutes to connect episodes 2 and 3.

Starting the activity

The teacher reminds the students that the hero, who cannot reach the treasure he can see at
the bottom of the sea on his own, must guide a submarine, represented here by an octopus.
The octopus brings the treasure to the surface. Today, the students are going to program this
episode of the hero’s story.

Activity (ideally in pairs)

The teacher gives students their programming assignment: in the same program as the last
time, they must add a new scene that appears once the octopus is visible in the sea. In this
scene, they must add a “decorative” animal of their choice. It will
not participate directly in the story and its movements will repeat
through the scene. The teacher shows them the expected result
(file “2-2a_sea_ correction_lesson6.b2), which uses new “Control”
instructions:
The teacher tells the class about these instructions: they are loops,
but you cannot decide ahead of time how many times they will be
executed. Some of these loops have a hexagonal field that must be
filled in with an instruction in the same shape. Some can be found
in the “Sensing” instruction category (as well as in the “Operators”
category, but these will not be useful here), such as:

180 Pedagogical Module

Combinations such as above can be found, and the
teacher can describe them to the class and test them
on the cat sprite:
The cat sprite moves 10 steps, stops for one second, then
starts again until it touches the edge. If it is touching the
edge from the start, it does nothing. If it starts near the
edge, it will take one or two steps; if it starts far from the edge, it will take more steps.
Once students have understood, the teacher suggests inactivating the scripts for the first two episodes
of the story (to do this, simply disconnect them from the trigger event) to they can focus on the current
episode. They must try to get a similar result as the one the teacher showed them, but it does not have
to be exactly the same.

Group discussion

During the group discussion, the teacher goes over any difficulties students had. The teacher
guides the discussion to new loop types: the “repeat forever” loop and the “repeat until ...”
loop. If there is enough time, students can revise their programs following the group discussion.
If not, the students can make any corrections during the extra 30 minutes dedicated to this
lesson to connect episodes 2 and 3.
The file “2-2a_sea_correction_lesson6.sb2” provides an example of the result once the scripts
for the first two episodes are reactivated and after the dock and sea episodes are linked.

Teaching notes

•	 Some students will use instructions the class has not yet seen. At this point, when they
begin to have a good understanding of the software, it is important to let them express
their creativity. But to help them continue learning, the teacher should encourage them
to regularly test their programs. It is much more difficult to detect a bug in a program
written as a block without tests than in a program that has been tested throughout the
writing process.

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 Certain loops are repeated forever.
•	 Certain loops are repeated until a condition is met (for example, a sprite touches another

sprite, or a sprite touches a certain color).

The students write down this conclusion in their science notebook and complete the Scratch

worksheet by coloring in the new instructions they learned and writing down a few key words:
infinite loop, condition, touch a sprite, touch a color.

181

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 7

 -
 P

ro
d

u
c

in
g

 t
h

e
 f

in
a

l
e

p
is

o
d

e
..

.
L

e
v

e
l

2
 -

 S
e

q
.2

a

 Lesson 7 - Producing the final
episode autonomously

Summary Students work on their own to tell the last episode of their hero’s
adventure. They cover the key ideas from the entire sequence and finish
their program.

Key ideas
 (see Conceptual scenario, page 108) Same as for the previous lessons

Equipment Same as for the previous lessons
Duration 1 or more one-hour lessons

Starting the activity

The teacher tells the students that they can tell the last episode almost however they like with
Scratch. There is only one condition: they must use events to coordinate their characters and
use loops. The teacher suggests that they try and not be overly ambitious to start with and to
add elements to their story if they have time at the end.

Creating the episode (ideally in pairs)

The students talk in pairs about the essential elements to include in the last episode. Which
characters? Which stages? Which events to trigger the characters’ actions?
The students have two available backdrops: the beach at sunset and the hero’s bedroom. They
can also choose another stage from the Scratch library.

Programming the episode

After approval from the teacher, who checks with the students that their plan is realistic, the
students program the last episode in a new file separate from the first three episodes. The
teacher walks around to all the groups to make sure they are making progress.

Conclusion: Class presentation

To conclude the lesson, each group of students shows their final episode to the class. The
students talk about the programs they are most proud of or those that were most difficult
to figure out. They can also share any difficulties they could not solve and see if the class can
help find a solution. Students will have time to modify their episode after the class discussion.
The file “2-2a_magician_correction_lesson_7.sb2” is an example of a program to tell the last
episode (bird, magician and returning home for the hero). This is only one possible option.

Further study

Now that students have learned to program on Scratch, they can use their skills to create other
projects during the year, such as animated cards for Christmas, Mother’s Day, etc.

182 Pedagogical Module

Sequence 3: Robotics
This sequence deals with programming a robot and is an alternative option to Sequence 2
(programming in Scratch Junior) and its alternative Sequence 2a, programming in Scratch).

Programming a robot instead of programming on a tablet

or computer

Programming a robot uses the same concepts as programming on a computer; they are simply
applied to a physical object. The Thymio robot can be programmed using Aseba/VPL (visual
programming language).
Sequence 3 does not include scripted elements from the adventure from Sequence 1 (pages
109 and on): in this respect, it is completely independent. However, we do not suggest doing
it alone but rather after Sequence 1. This will let students use the unplugged activities to
conceptualize the key ideas of algorithm and program, which will be covered again here, as
well as key ideas specific to robots (sensors, actuators, environmental interaction, etc.). That
said, there is no need to have completed Sequence 2 (Scratch Junior) or the alternative lesson
2a (with Scratch).
This “Level 2 robotics” sequence is highly inspired by the “Level 1 robotics” sequence (pages
81 and on), and in fact repeats certain parts of it: the first three lessons of this sequence are
a repeat of the Level 1 lessons, with just a few small differences. The following lessons will
give students a more in-depth look at robot programming. For the sake of brevity, we will not
recopy all the information here, but simply the key parts of these lessons with the necessary
adaptations. We therefore suggest reading the “Level 1 robotics” sequence beforehand.

Lesson Title Page Summary

Lessons 1,
2, 3

Introduction to
Thymio in Level 2

183

Students are introduced to the Thymio robot and
familiarize themselves with it. After exploring the
various pre-programmed modes, they have Thymio run
a maze. They gradually formulate a simple definition of
what a robot is.
(Adaptation of the four first lessons of the «Robotics in
Level 1» sequence, pages 81 and on)

Lesson 4 Programming Thymio
(1/2) 188

To go into more depth with Thymio, students discover
the Aseba/VPL programming environment. The graphic
interface lets them design their own programs for
Thymio.

Lesson 5 Understanding
sensors to program
Thymio

193

VPL programming for Thymio is event-driven: students
will learn how to use Thymio’s sensor status to trigger
precise actions.

Lesson 6 Programming Thymio
(2/2) 196 Students take on small challenges to create their own

VPL programs for Thymio.
Lessons 7
and 8

Obstacle course for
Thymio 198

Students must reproduce Thymio’s yellow «explorer»
mode. First, they write the program. Then, they test
their program in a real maze.

183

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
 L

e
s

s
o

n
 1

,
2

,
3

 -
 I

n
tr

o
d

u
c

ti
o

n
 t

o
 T

h
y

m
io

 i
n

..
.

L
e

v
e

l
2

 -
 S

e
q

.3

Lesson 1, 2, 3 - Introduction to
Thymio in Level 2

Summary Students are introduced to the Thymio robot and familiarize themselves
with it. After exploring the various pre-programmed modes, they have
Thymio run a maze. They gradually formulate a simple definition of what
a robot is.
(Adaptation of the four first lessons of the «Robotics in Level 1»
sequence, pages 81 and on)

Key ideas
 (see Conceptual scenario, page 108)

“Machines”
•	 The machines all around us simply follow “orders” (instructions).

“Robot”
•	 A robot is a machine that can interact with its surroundings.
•	 A robot has sensors that let it perceive its surroundings.
•	 A robot can perform actions: move, make a sound, produce light,

etc.
•	 A robot has a computer that decides which actions to take in

which situations.
•	 If you compare a robot to an animal, you can say that:

• Its sensors are like sensory organs
• Its motors are like muscles
• Its computer is like a brain
• The parts taken together are like a body

“Algorithms”
•	 A test indicates which action to perform when a condition is met..

Inquiry-based methods Experimentation, Observation, Discussion

Equipment For the teacher:
•	 Handout 8, page 85 (documentary handout from Level 1)
•	 A screwdriver
•	 Drawing paper, black paint and a paint roller (4 cm)
•	 A2 size poster or flip chart

For each group:
•	 A Thymio robot
•	 A track printed on A3 paper
•	 Objects that can be easily moved around and used as obstacles for

Thymio (cubes, books, etc.)

For each student:
•	 Handout 23, page 187

Glossary Thymio, instruction, condition, test, robot, sensor, motor, program
Duration 2 to 3 one-hour lessons

Foreword
As previously explained, this Level 2 robotics sequence covers the Level 1 introduction to
Thymio sequence in two to three lessons (pages 81 and on) with a few differences as described
below, and then goes into greater detail with an initial approach to programming a Thymio
robot using Aseba/VPL.
We also suggest having students complete Handout 23 individually (instead of doing their own
drawings), and creating posters for the entire class.

184 Pedagogical Module

First lesson: Meeting Thymio

As explained in Lesson 2.1, Level 1 (page 82), the teacher shows the Thymio robots (turned off)
to the students, who have been divided into small groups. Students can then play with Thymio
on their own to figure out how to turn it on and off and make it change colors.

Students from Nathalie Pasquet’s class (Paris)

Then, as in Lesson 2.2, Level 1 (page 86), the teacher gives Handout 23 to the students. Each
group will study one of Thymio’s colors (green, red, purple, yellow) and describe its behavior,
then fill out Handout 23 by connecting the event/action pairs. The following vocabulary is
introduced during the group discussion: a test is comprised of a condition (“IF green Thymio
detects an object in front of it”) and an instruction to do only if the condition is met (“THEN it

moves forward”).

Teaching notes

•	 Handout 23 is meant to be quite condensed. Accordingly, it does not include some of
Thymio’s behaviors, which can be explored and described orally with the class:

o In “red” mode: Thymio behaves differently depending on whether an object is
placed “behind it, to the right” or “behind it, to the left.” It’s up to you to figure
out how!

o In “purple” mode”: the behavior of the arrows is not completely straightforward.
In fact, moving is more complex than simply going forward, standing still, or going
backward. Thymio has three speeds in each direction (forward or backward).
Pressing one arrow increases (“forward” arrow) or decreases (“back” arrow) the
speed, similar to the speeds on a motorLevel. For example, if Thymio is moving
on speed 3 (the fastest), pressing on the “back” arrow does not make it move
backward, but rather slows it down one speed. Thymio will then begin moving
in speed 2. These speeds can be combined with the instructions “turn right” or

185

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
 L

e
s

s
o

n
 1

,
2

,
3

 -
 I

n
tr

o
d

u
c

ti
o

n
 t

o
 T

h
y

m
io

 i
n

..
.

L
e

v
e

l
2

 -
 S

e
q

.3

“turn left” to make Thymio turn at different speeds.
o In “yellow” mode, Thymio’s behavior is less exaggerated than on the handout.

When an obstacle is placed in front of it, Thymio tries to keep moving forward
several times before deciding to go around the obstacle.

•	 Using the Thymio robot can help deepen students’ understanding of a nuance of
language, which will recur often in the different lessons: what is the difference between
“move” and “move around”? A mechanical arm screwed into the ground cannot move
around the room, for example, but its joints allow it to move: it can pivot, bend, etc.
Thymio, by moving (or turning) its wheels, can move around.

Second lesson: Get Thymio through a maze

Using Lesson 2.3, Level 1 (page 89), the teacher has the students test out a Thymio mode
that was not discussed in the previous lesson: the turquoise mode. The teacher hands out
the printed tracks13 so students can see what turquoise Thymio can do. The students will
learn about his “investigator” or “tracker” mode.

Students from Nathalie Pasquet’s class (Paris)

Next, the teacher has students do an activity that will touch on all key ideas covered so far:
getting Thymio through a maze built with objects such as cubes, books, etc. Each of Thymio’s
modes students have seen until now can be used for this activity: Green Thymio will follow a
hand that guides it through the maze, turquoise Thymio will follow a black ribbon placed on
the ground in the maze, etc.

Third lesson: Thymio is a robot

As explained in the review lesson “What is a robot?” (page 96), the teacher begins by taking
Thymio apart to describe its components. Little by little, the students will understand that
a robot is a machine that can interact with its environment using sensors, actuators, and a
program.

13 All of the Scratch Junior, Scratch and Thymio programming resources are available on the project website.
See page 342.

186 Pedagogical Module

Conclusion and lesson recapitulation activity

Through these lessons, the class creates a group poster showing what they learned about
Thymio. In particular, they will come to the following conclusions, which are to be written
down in their science notebook:

•	 Thymio turns on using the middle button.
•	 Thymio can change color.
•	 Thymio can make sounds.
•	 Thymio can be in different modes, each indicated by a different color, which determine

the robot’s behavior.
•	 A robot has a computer, sensors and actuators that are all interconnected.

Second grade and third grade class, Anne-Sophie Boullis (Saint-Georges d’Orques)

187

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
 L

e
s

s
o

n
 1

,
2

,
3

 -
 I

n
tr

o
d

u
c

ti
o

n
 t

o
 T

h
y

m
io

 i
n

..
.

L
e

v
e

l
2

 -
 S

e
q

.3

Instruction: Turn on your Thymio robot and try out the different modes. Find a nickname for each
mode. Next, link the event and action pairs based on your observations.

Green Thymio

Nick-
name:

IF Thymio detects an object
in front of it THEN it turns left

IF Thymio detects an object
to the right THEN it turns right

IF Thymio detects an object
to the left

THEN it moves
forward

Red Thymio

Nick-
name:

IF Thymio detects an object
in front of it

THEN it moves
backward

IF Thymio detects an object
to the right

THEN it moves back-
ward and turns right

IF Thymio detects an object
to the left

THEN it moves back-
ward and turns left

IF Thymio detects an object
behind it

THEN it moves
forward

Purple Thymio (start blocked)

Nick-
name:

IF you press on the forward
arrow

THEN it moves
forward

IF you press on the
backward arrow

THEN it moves
backward

IF you press on the right
arrow THEN it turns left

IF you press on the left
arrow THEN it turns right

Yellow Thymio

Nick-
name:

IF Thymio detects an object
in front of it THEN it turns left

IF Thymio detects an object
to the right THEN it turns right

IF Thymio detects an object
to the left

THEN it moves
backward

IF Thymio detects nothing
THEN it moves
forward

HANDOUT 23

Learning abaout Thymio

188 Pedagogical Module

Lesson 4 - Programming Thymio (1/2)
Summary To go into more depth with Thymio, students discover the Aseba/VPL

programming environment. The graphic interface lets them design their
own programs for Thymio.

Key ideas
 (see Conceptual scenario, page 108)

“Machines”
•	 The machines all around us simply follow “orders” (instructions)

“Languages”
•	 We can give a machine instructions by using a special language

called a programming language, which can be understood by both
people and machines. If you launch the same program several
times, it will always do the same thing.

“Robot”
•	 A robot is a machine that can interact with its surroundings
•	 A robot has a computer that decides which actions to take in

which situations.
“Algorithms”

•	 A test indicates which action to perform when a condition is met.
Equipment For each group

•	 A Thymio robot.
•	 A computer (Windows, Mac or Linux OS) with VPL software3.

For each student:
•	 Handout 24, page 191
•	 Handout 25, page 192

Glossary Programming language
Duration 1 hour

Preparation

Download the Aseba/VPL software at https://www.thymio.org/en:start (you can choose the
version for your operating system). The software is free of charge and available for Windows,
Mac and Linux OS. During installation, simply accept the default settings (and be sure to
choose the “For Thymio II” option (Recommended)).

When installation is complete, rename the “Aseba” shortcut “Thymio.”

To start VPL

Method 1 Method 2

1. Connect Thymio to the computer
using the USB cable (it will turn on)

2. Start Thymio-VPL

1. Start Thymio-VPL (a «Choose an Aseba target»
window opens)

2. Connect Thymio to the computer using the
USB cable (it will turn on)

3. Check the «Serial port» box, select «Thymio-II
Robot,» click «Connect»

189

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 P

ro
g

ra
m

m
in

g
 T

h
y

m
io

 (
1/

2
)

L
e

v
e

l
2

 -
 S

e
q

.3

To program

1. Write the program
2. Save the program
3. Run the program

If the robot is connected to the computer via a cable and the software is closed out by mistake,
the computer may no longer recognize the robot. If this happens, unplug the robot and plug
it back in.
Start the “Thymio VPL” software or ask the students to do so.

Starting the activity

In the previous lessons, students will have handled Thymio and learned that a computer
commands the robot’s actions based on what its sensors detect. Now, students will create
their own programs to have Thymio perform other actions. For students to be able to talk to
Thymio, the teacher presents the Aseba/VPL programming language.

Experiment: Programming Thymio with VPL (in groups)

This language lets students create programs by describing a series of tests. By combining one
card each from the left and right columns, students can create a test.

To help students better understand VPL, the teacher gives students Handout 24. The students
begin by getting familiar with the interface and how to create programs with the cards provided.
In particular, they will see that the cards from the left column correspond to various events that
the sensors can trigger, while the cards from the right column correspond to actions.

Teaching notes

•	 You learn to program by programming, not by watching someone program. It is
interesting to consider the same problem in pairs (probably more so than to program
alone), but it is important to be active. We therefore recommend placing the students in
small groups in front of computers (ideally two students per machine) and asking them
to “switch over” (pass the keyboard and mouse to their neighbor) every 10 minutes.

•	 For this introductory lesson, only the “red” sensor status is taken into account. If students
ask what the “black” status for a sensor in VPL means, the teacher tells them that this
will be covered in the next lesson.

The class explores the pre-set programs. The teacher gives students Handout 25. The students
must test the four programs one after another and write down what they did in the form of
a test.
To test the effect of a program on Thymio, students must:
§	Delete the cards already in the central area of the graphic interface by clicking on the

corresponding Xs (see Handout 24)
§	Place the event card and the action card to be tested in the central area
§	Modify these cards if necessary by clicking the buttons and/or moving the cursors
§	Start the program by pressing the arrow

190 Pedagogical Module

§	Place Thymio on a flat surface, without unplugging it if possible, to test and observe
the effects of the program by manipulating Thymio as much as needed. If the students
unplug Thymio, they will have to plug it back in before testing the next program.

Group discussion

The teacher writes down the class’s descriptions for the different programs on the board:
•	 Program 1: IF you press the center button, THEN Thymio moves forward
•	 Program 2: IF Thymio detects an object in front of it, THEN the cover turns green
•	 Program 3: IF Thymio detects an object under it, THEN the chassis turns blue
•	 Program 4: IF you tap on Thymio’s cover, THEN it plays music

Scientific notes

•	 Program 3 uses Thymio’s chassis sensors. These are the same sensors that are used
for turquoise Thymio’s “line-follower” mode. If you put Thymio near the edge of the
table, it detects nothing. The same happens when you put it on a black piece of paper.
However, it will detect any light surface.

•	 For Programs 1, 2 and 3, Thymio will not come back alone to its original setting (it does
not stop until another instruction is given and will not go back to the original color).
This is normal, because this would be another behavior that the one covered here: at
the moment, when it detects an event, Thymio changes color or begins to move and
it shall continue until another program asks it to do something else. The next lesson
deals with getting Thymio to return to its original setting.

Conclusion and lesson recapitulation activity
The class summarizes together what they learned in this lesson:

•	 The machines all around us simply follow orders (instructions).
•	 We give instructions to a machine by creating a program, which uses a programming

language.
•	 The execution of a program is reproducible (if neither the instructions nor the data to

manipulate change, the program always gives the same result).

191

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 P

ro
g

ra
m

m
in

g
 T

h
y

m
io

 (
1/

2
)

L
e

v
e

l
2

 -
 S

e
q

.3

Instruction: Place two cards in the center and change them to reproduce the program below.
Then circle the correct answers based on what happens.

The button is used to: Start the program Stop the program

The button is used to: Start the program Stop the program

The images in the green box are: Actions Sensors

The images in the red box are: Actions Sensors

The “+” button outlined in green is used to: Delete an order Add an order

The button “×” outlined in red is used to: Delete an order Add an order

HANDOUT 24

Programming Thymio: Introduction to the VPL interface

192 Pedagogical Module

Instruction: Here are four different programs that are created using one event card and one
action card. Test them on your Thymio robot, then complete the sentences to describe what each
program does.

Program 1:

IF THEN

Program 2:

IF THEN

Program 3:

IF THEN

Program 4:

IF THEN

HANDOUT 25

Writing your first Thymio programs

193

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 5

 -
 U

n
d

e
rs

ta
n

d
in

g
 s

e
n

s
o

rs
 t

o
..

.
L

e
v

e
l

2
 -

 S
e

q
.3

Lesson 5 - Understanding
sensors to program Thymio

Summary VPL programming for Thymio is event-driven: students will learn how to
use Thymio’s sensor status to trigger precise actions.

Key ideas
 (see Conceptual scenario, page 108)

“Robot”
•	 A robot has sensors that let it perceive its surroundings.

“Algorithms”
•	 A test indicates which action to perform when a condition is met.

Equipment For each group
•	 A Thymio robot.
•	 A computer with VPL software.

For each student:
•	 Handout 26, page 195.
•	 (as well as Handout 25 from the previous lesson for further study

activities)
Glossary Sensor, event
Duration 1 hour

Starting the activity

In the previous lesson, the students programmed basic behaviors for Thymio: moving forward
and changing color. But they also noticed that Thymio never goes back to its original setting.
If it starts moving forward, nothing in its program tells it how or when to stop. The teacher
restates this observation: when a sensor detects something, we say there is an “event”; for
each event, Thymio verifies in its program if there is a test that gives it instructions to follow.
In your opinion, can “detecting nothing” be an event?

Experiment: Detecting and not detecting (in groups)

The teacher gives students Handout 26. Each group will test the programs on the handout,
making sure to delete the previous programs, and answer the questions.

Scientific notes

•	 For the first time, students will see a program with more than one test (Program 5 has
two tests). The two tests must be written one above the other for the program to be
complete.

Group discussion

The class understands that VPL lets them write very precise tests, based on whether the sensors
detect something (red icon), detect nothing (white icon) or if their setting is not important
(gray icon).

194 Pedagogical Module

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 When a sensor detects something, we call this an event.
•	 A condition can be “an event happened” or “an event has not happened”

Further study
Faster students can apply this new information to complete the programs on Handout 25
(previous lesson):

•	 Program 1: Add a test to make Thymio stop (e.g., when another button is pressed).
•	 Program 2: Add a test to make Thymio’s cover not be green (e.g., it turns yellow) if it

no longer detects anything in front of it.
•	 Program 3: Add a test to make Thymio’s chassis not be blue if it no longer detects

anything underneath it.

195

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 5

 -
 U

n
d

e
rs

ta
n

d
in

g
 s

e
n

s
o

rs
 t

o
..

.
L

e
v

e
l

2
 -

 S
e

q
.3

Instruction: Here are two different programs: Program 5, which has two tests, and Program 6,
which has one test. Try them on your Thymio robot, then answer the questions.

Program 5:

Circle the right answer:

What color is Thymio when your hand is in front of the two rear sensors?
GREEN / BLUE

What color is Thymio when your hand is not in front of the two rear sensors?
GREEN / BLUE

Program 6:

Answer the questions:

What color is Thymio when your hand is in front of the two rear sensors?
.

What color is Thymio when your hand is not in front of the two rear sensors?
.

Connect the icons to their meanings.

 The icon means «IF the sensor detects or does not detect something…»

The icon means «IF the sensor does not detect something…»

The icon means «IF the sensor detects something…»

HANDOUT 26

Testing Thymio's sensors

196 Pedagogical Module

Lesson 6 - Programming Thymio

(2/2)
Summary Students take on small challenges to create their own VPL programs for

Thymio.
Key ideas
 (see Conceptual scenario, page 108)

“Machines”
•	 The machines all around us simply follow “orders” (instructions)

“Languages”
•	 We can give a machine instructions by using a special language

called a programming language, which can be understood by
both people and machines.

“Robot”
•	 A robot is a machine that can interact with its surroundings.
•	 A robot has a computer that decides which actions to take in

which situations.
“Algorithms”

•	 A test indicates which action to perform when a condition is met.
Equipment For each group

•	 A Thymio robot.
•	 A computer with VPL software.

Duration 1 hour

Challenges: Creating new programs for Thymio

(in groups)

In this formative assessment lesson, the students review the
key ideas they have previously learned. The teacher will have
the class do three new challenges. The students will have 20
minutes to create a program for each problem.
Challenge 1: Make Thymio move forward if its front sensor
detects nothing and move backward if the sensor detects
something. Link one color to each of these movements.

Second grade and third grade class, Anne-
Sophie Boullis, Saint-Georges d’Orques

197

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 6

 -
 P

ro
g

ra
m

m
in

g
 T

h
y

m
io

 (
2

/
2

)
L

e
v

e
l

2
 -

 S
e

q
.3

Challenge 2: Create a color selector. Link one color to
each of Thymio’s front sensors.
For this challenge, the students may realize that there is
an order for the tests. For example, if two conditions are
met at the same time with concurrent executions, which
takes priority? Here, the execution affects Thymio’s color:
it cannot have two colors at the same time, so which
will it choose? Answer: VPL applies the instruction with
the highest number. If, for example, you simultaneously
activate the “center right” sensor (Instruction no.4: turn
Thymio turquoise) and the “right” sensor (Instruction
no.5: turn Thymio blue): Thymio will turn blue. (Here,
instructions no.5 and 4 are concurrent, but instruction
no.5 is executed.)

Challenge 3: Create a musical instrument. Link a sound
to each sensor.

198 Pedagogical Module

Lessons 7 and 8 - Obstacle
course for Thymio

Summary Students must reproduce Thymio’s yellow «explorer» mode. First, they
write the program. Then, they test their program in a real maze.

Key ideas
 (see Conceptual scenario, page 108)

“Machines”
•	 The machines all around us simply follow “orders” (instructions)
•	 By combining several simple instructions, we can perform a

complex task.
“Languages”

•	 We can give a machine instructions by using a special language
called a programming language, which can be understood by both
people and machines.

•	 A bug is an error in a program.
“Robot”

•	 A robot is a machine that can interact with its surroundings
•	 A robot has a computer that decides which actions to take in

which situations.
“Algorithms”

•	 A test indicates which action to perform when a condition is met.
Equipment For each group

•	 A Thymio robot
•	 A computer with VPL software
•	 (Optional) Handout 27 (page 200)

Glossary Bug
Duration 2 one-hour lessons

Starting the activity

The teacher reminds the students that Thymio comes with pre-programmed modes. The teacher
gives them a challenge: reprogram a similar mode (simplified) to Thymio’s yellow mode. The
students remember that this is the explorer mode, where Thymio moves forward and avoids
obstacles.

Challenge: Reproducing an explorer Thymio (in groups)

Depending on how comfortable the class is with the technology and their ages, this challenge
can be done in several ways. For more independent students, the teacher can not pass out
Handout 27 and simply use it as a cheat sheet. If students need more support, the teacher can
give them the handout to give them more guidance.
In groups or as a class, the various stages of programming need to be broken down: what does
Thymio do in its default settings? If it detects an obstacle to the right, what does it do? And to
the left? And in front of it? VPL is then used to program the robot and test whether the program
works by playing with Thymio on the table.
It is very possible that the lesson will be over by the time the programs are written. The “real
world” test can then be done during the next lesson.

199

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 7

 a
n

d
 8

 -
 O

b
s

ta
c

le
 c

o
u

rs
e

 f
o

r
T

h
y

m
io

L
e

v
e

l
2

 -
 S

e
q

.3

One example of a correct program is:

Experiment: A real test for Thymio (in groups)

The class now prepares a huge maze with obstacles that are at least 6 cm tall. All the groups will
test their programs at the same time: the robots will interact with the maze and with each other.
If possible, the floor of the maze can be covered with drawing paper: each group can insert
a marker in the pen holder on Thymio’s cover. This will let them see the paths taken by the
different robots during the experiment.
The groups load the program they designed during the previous lesson and let their robot run
the maze. They can improve their program as problems crop up: the teacher uses this as an
opportunity to introduce the term “bug” to describe the issues.

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 By combining several simple instructions, we can perform a complex task such as running

a maze
•	 A bug is an error in a program.

200 Pedagogical Module

1.

Create an instruction to make Thymio move
forward if its front sensors detects nothing

2.

Add an instruction to make Thymio turn right
when it detects something on the left

3.

Add an instruction to make Thymio turn left when
it detects something on the right

4.

Add an instruction to make Thymio back up slightly
while turning if it detects something in front of it

5. (OPTIONAL)
Add instructions to make Thymio turn red if it
detects an obstacle and green if it does not

HANDOUT 27

Programming an "explorer" Thymio

201

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
O

v
e

rv
ie

w
L

e
v

e
l

3

Activities Level 3
Overview

The activities module for Level 3 alternates unplugged exercises (done without a computer
but with experimentation and documentary equipment) and plugged programming exercises
(using a computer).

The theme that ties the activities together is the exploration of an unknown planet.
•	 Sequence 1 (entirely unplugged) focuses on preparing the mission (How will you get

around and communicate?) and allows students to become familiar with programming
language and encoding information (first using numerals, then using binary code).

•	 Sequence 2, mainly plugged, gives students a similar mission through a video game
they must program. Students learn about the programming environment and define
the steps and tasks needed to complete the project as they work at their own pace.
Several unplugged activities help students to fully understand the concepts (variables,
tests, loops, logical operators) used during the programming activities.

•	 Sequence 3 (entirely unplugged) returns to the issue of how information is represented
to teach students how to code images, learn cryptography techniques for secure data
exchanges, etc.

If the classroom is not equipped with computers, Sequences 1 and 3 can be done back to back
so students can complete an entirely unplugged IT project, which is an interesting approach
in and of itself.

Note: Contrary to the activity modules for Levels 1 and 2, here we do not have a “robot”
variation. However, if the classroom is equipped with robots, you can substitute or round off
the Scratch lessons with robot programming lessons. These types of lessons will introduce
students to the ideas of algorithms, programs, tests, events, etc.14

14 The Thymio II robot, used in the Level 1 and 2 lessons, can also be used for Level 3. You can even operate
it using Scratch (this requires installing an extension for Scratch, refer to https://www.thymio.org/
en:scratchprogramming-asebascratch).

202 Pedagogical Module

Lesson summary

Sequence 1: Prepare the mission

Lesson Title Page Summary

Lesson 1 How to remotely
operate a vehicle

207

Students must provide the instructions to remotely
operate a vehicle. To do this, they define a programming
language and explore the difference between it and
a natural language. They are also introduced to the
notion of a software bug.

Lesson 2 How to encode a
message with numbers

213

Students must encode a textual message using only
numbers. To do this, they make suggestions and then
create a correspondence table for the letters and
numbers for use by the entire class. They use this
table to encode a message that they send as well as to
decode a message they receive.

Lesson 3 How to code
information in binary

219

Students must now use only two symbols (0 and 1) to
transmit messages. They explore the ways of encoding
different information (the four cardinal directions –
North/South/East/West, the seven days of the week,
etc.) by combining 0s and 1s as an introduction to
binary coding.

Lesson 4 How to encode and
decode a binary
message 225

Continuing on from the previous lesson, students
apply what they have learned to encode a short
worded message in binary code, then decode a
message in binary code they receive.

Sequence 2: Simulate the mission in Scratch
For this sequence, we reason in “steps” rather than lessons (see note on project pedagogy, at the
start of this sequence, pages 229 and on).

Step Title Page Summary

Step 1 Introduction to the
Scratch programming
environment 234

The students learn about Scratch, a programming
environment suited to elementary school students.
They learn to launch the program and follow a few
simple instructions.

Step 2 Customizing the
environment and saving
all work 243

The students learn to customize Scratch (sprite and
background) and save their work to be used again
later.
They discuss the different steps they will follow to
create their video game.

Step 3 Operating the rover
246

The students create their first program, which will
let them operate the rover using arrows. They learn
about the coordinate system.

Step 4 Gathering resources
and managing scores

253

Students complete their program by adding resources
they must pick up (new sprites) and creating a variable
for their score (this score increases as more resources
are picked up). They learn to program conditional
constructs (if– then) and use sensors.

Step 5

Plugged and unplugged
activities to better
understand certain
algorithmic concepts

260

Alongside their programming activity, students deepen
their understanding of certain algorithmic concepts
introduced durixng Step 4: variables, tests, loops,
logical operators and even the notion of algorithm.

203

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
O

v
e

rv
ie

w
L

e
v

e
l

3

Step 6 Avoiding obstacles and
managing player lives

277

Students now add obstacles to avoid (new sprites) and
create a variable for the number of «lives». They are
again exposed to the ideas of tests, loops and variables
seen previously and deepen their understanding of
what an event is.

Step 7 Ending the game:
«Game over» 281

Students complete their program by introducing a
test on the number of remaining lives: the message
«Game over» appears and the program stops when no
more lives remain.

Step 8 Adding challenges

284

Students finalize their video game by adding additional
challenges: a countdown, a tornado that goes faster
and faster and moves around randomly, etc. The
concepts seen during the previous lessons – tests,
loops, variables and events – are all reviewed.

Step 9 Further study in Scratch
292

Here are several ideas to explore other functionalities
in Scratch, such as giving students extra options for
their personal projects.

Sequence 3: Sending news

Lesson Title Page Summary

Lesson 1 How to send an image

296

Students must figure out how to transfer an image
remotely. To do this, they learn that an image can
be represented by a pixel grid. They learn about the
notion of resolution as they see that the more pixels
an image has, the clearer it becomes, but also the
slower it is to transfer.

Lesson 2 How to code a black
and white image

304

Students apply what they learned from the previous
lesson to coding black and white digital images. They
first view a single file in a text editor and an image
editor to understand how the information is coded.
They then code a small checkerboard themselves.

Lesson 3 (Optional) How to code
a grayscale or color
image

309
Students take what they learned in the previous lesson
further by learning how to code a gray and color digital
image.

Lesson 4 How to ensure a
message is secure 316

To protect their messages, students learn about
encryption using a simple algorithm (called Caesar’s
cipher), which involves shifting the letters of a
message.

Lesson 5 (Optional) How to
make sure our data are
successfully sent 324

Students learn that it is possible to detect and correct
errors introduced when storing or transferring a file by
adding the right information. This lets them do a sort
of «magic trick.»

Review: Defining computer science
This lesson, page 328, is a review of what computer science is all about using the poster created during
the previous sequences. With the help of documentary research, students create a timeline of the key
moments in the history of computer science.

204 Pedagogical Module

Conceptual scenario: << Level 3 computer science >>

The ideas covered during these three sequences for Level 3 can be organized as below.

205

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
O

v
e

rv
ie

w
L

e
v

e
l

3

"1,2,3...code!"
Conceptual Scenario Level 3

206 Pedagogical Module

Sequence 1: Prepare the mission

Lesson Title Page Summary

Lesson 1 How to remotely
operate a vehicle

207

Students must provide the instructions to remotely
operate a vehicle. To do this, they define a programming
language and explore the difference between it and
a natural language. They are also introduced to the
notion of a software bug.

Lesson 2 How to encode a
message with numbers

213

Students must encode a textual message using only
numbers. To do this, they make suggestions and then
create a correspondence table for the letters and
numbers for use by the entire class. They use this
table to encode a message that they send as well as to
decode a message they receive.

Lesson 3 How to code
information in binary

219

Students must now use only two symbols (0 and 1) to
transmit messages. They explore the ways of encoding
different information (the four cardinal directions –
North/South/East/West, the seven days of the week,
etc.) by combining 0s and 1s as an introduction to
binary coding.

Lesson 4 How to encode and
decode a binary
message 225

Continuing on from the previous lesson, students apply
what they have learned to encode a short worded
message in binary code, then decode a message in
binary code they receive.

207

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 H

o
w

 t
o

 r
e

m
o

te
ly

 o
p

e
ra

te
 a

 v
e

h
ic

le
L

e
v

e
l

3
 -

 S
e

q
.1

Lesson 1 - How to remotely

operate a vehicle
Summary Students must provide the instructions to remotely operate a vehicle. To

do this, they define a programming language and explore the difference
between it and a natural language. They are also introduced to the notion
of a software bug.

Key ideas

 (see Conceptual scenario, page 204)

“Machines”
•	 The machines all around us simply follow orders (instructions).

 “Languages”
•	 In computer science, we invent and use languages.
•	 To give machines instructions, we use a programming language,

which can be understood by both machines and people.
•	 A programming language is different than a natural language.

• It has very few words or grammar rules.
• It leaves no room for ambiguity.
• It can be understood by certain machines.

•	 There are several programming languages, created for different
uses.

•	 A bug is an error in a program.
•	 A bug that seems minor can have major consequences.

Inquiry-based methods Experimentation

Equipment For the class
•	 Handout 28, page 212

(optional)
•	 A computer room with an internet connection

Glossary Programming language, instruction, bug
Duration 1 hour 30 minutes (can be broken into two 45-minute lessons)

Introductory question: Project presentation

The teacher explains to the class that the project involves simulating an exploration mission
on a faraway planet. The class must start by preparing the mission: thinking about how they
will get around, communicate, etc. Then, the class will “play” the mission using a simulation
program each student will create (a simple video game).
This will be a manned space mission and the team will have a base and a land rover vehicle
available when they land on the planet. It is a hostile environment, so someone must always stay
at the base during the exploration outings. If the field team members can no longer pilot the
rover (for example, if they lose consciousness), the person at the base must be able to remotely
drive the rover back to base without needing to talk to the team. Orders are transmitted to the
rover as waves, but you must invent a language to give these orders.
The question is what language do you use to operate a rover remotely?

208 Pedagogical Module

The teacher hangs or puts up on a projector a map of the area to explore (Handout 28). This
area is sectioned off on a grid and a route has been drawn to return to base while avoiding
dangerous areas. No shortcuts are possible: you must follow the established route in the
direction of the arrows.

Quest: establish a language (in pairs)

The teacher passes out the Handout 28 to the students, who are split into pairs. They must
decide what types of instructions to give to the rover to make it follow the required route and
return to base. The movements must be made square by square (not diagonally).

Group discussion

After a few minutes, the class comes together to discuss all the pairs’ work. For example, students can
draw or show their solutions on a projector and the class verifies together if it is correct by filling out
the table (use any object as the rover and have it follow the instructions exactly).

Fourth Grade class, Carole Vinel (Paris)
 “N = move northward; S = move southward; E = move eastward; O = move westward”

There are (at least) two ways consider giving the instructions. You can either give the rover
“absolute” directions (go North, go West, etc.) or relative directions that depend on the rover’s
actual position (turn right, go forward, turn left, back up, etc.). It is preferable to divide the

209

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 H

o
w

 t
o

 r
e

m
o

te
ly

 o
p

e
ra

te
 a

 v
e

h
ic

le
L

e
v

e
l

3
 -

 S
e

q
.1

instructions into separate orders. For example, the instruction “Move forward one square to
the right” is best given as: turn right (without advancing), then move forward one square.

Teaching notes

•	 The first approach to spatial processing (North, West, etc.) is called “allocentric” while
the second (right, left, etc.) is called “autocentric”. Students do not need to know these
terms as they will not be used in later lessons.

•	 A third approach (rarer) may also be suggested: assigning coordinates to each square
(A1, A2, B1) and, like in a game of Battleship, code movements by giving the name of
square of departure and arrival. For example, “Go from A1 to A2”. Please note: The
direction “A1 to A2 is not ambiguous because these squares are adjacent. However, “A1
to B7” is ambiguous (and therefore not satisfactory) as there are several ways to move
from square A1 to square B7. We will not go into further detail about this method in
later lessons.

It is likely that different teams will suggest the two different methods. If this is not the case,
the teacher can introduce the other method during the group discussion.

Several student suggestions
top left, allocentric language that does not address the distance moved: “up – right – up – left – up – right –

down – right – down – left”;
top right, allocentric language with autocentric keys: “▲=advance ►=turn right ◄=turn left▼=reverse;

lower left, showing changes made by a student during the research phase: “straight ahead, right, straight
ahead, left, straight ahead, right, right, right, down, right, down, down, left, left, straight ahead;

SA, R, SA, L, SA, R, R, R, D, R, D, D, L, L, SA;
1tSA, 1tR, 1tSA, 1tL, 1tSA, 3tR, 1tD, 1tR, 2tD, 2tL, 1tSA”;

lower right, autocentric language completely written out: “Advance one cell. Turn right and advance one cell.
Turn left and advance one cell. Turn left and advance one cell. Turn right and advance one cell. Turn right and

advance three cells. Turn right and advance one cell. Turn left and advance one cell. Turn right and advance two
cells. Turn right and advance two cells. Turn right and advance one cell.”.

Fifth Grade class, Anne-Marie Lebrun (Bourg-la-Reine).

210 Pedagogical Module

The teacher tells the students that the instructions are written in a special language, with a
very limited and unambiguous vocabulary: each instruction is perfectly explicit and must not
have more than one possible interpretation. This is called a “programming language.”
This language can be further simplified. For example, you do not need to say “Go to the East”
or “Go to the right” when you can simply say “East” or “Right” instead (for example, assuming
that the meaning of “right” is well defined when you say “move from one square to the right”
and not “pivot a quarter-turn to the right”).

As a class, the group describes the two languages, e.g.:

Allocentric language (or << absolute >>) Autocentric language (or << relative >>)
•	 North (means “move one square to the North”)
•	 South
•	 East

•	 West

•	 Forward (means “move forward one square in front
of you”)

•	 Right (means “pivot a quarter-turn to the right
without advancing”)

•	 Left

The allocentric language requires four vocabulary words while the autocentric language requires
only three. Some students may give the instruction “Back”, but the rover will end up in the
same square if it backs up one square or goes “Right, Right, Forward”. However, with these
instructions, it will have changed the direction it is facing. For the rover to be facing its initial
direction, the instruction must be “Right, Right, Forward, Right, Right.”

It is also possible to reduce the number of words used in the autocentric language. “Left”, for
example, can be “Right, Right, Right”. Here, two words suffice. For more clarity, you may want
to keep three or four words, depending on what the students decide.
The teacher tells the students that the grammar is also very basic. There are no genders,
plurals, moods or tenses. The only rule here applies to sequencing: when there is a series of
two instructions, such as “Right Forward,” this means that they must be done one after the
other in the order they appear.
For greater clarity when reading and writing the instructions, students can decide (or not!) to
introduce an additional rule, such as separating instructions with commas.
Finally, the class notes that these languages do not allow for other actions besides moving
around a grid (e.g., you cannot display text or do calculations): programming languages are
specialized. The teacher can tell the class that there are other similar languages (with few
“words”, few grammar rules, little or no ambiguity, etc.), such as music notation.

Introduction to errors

The teacher asks the students what happens if there is an error in the program (for example,
if an instruction is left out). A concrete example can be used based on the rover’s initial route
(Handout 28). What happens if you skip an instruction? Regardless of the language used, the
goal is not achieved. An error in an autocentric language can take you farther from the goal than
an allocentric language error. However, in both cases, this is a bug and there are two things to
take note of. First, the goal is not met, so the failure is just as serious in both cases. Second, if
there are obstacles along the route (cracks, etc.) you do not want to make a mistake, however
slight. Both bugs are equally problematic.
The class discusses the different possible causes of a bug. It may be from an error in the
algorithm (the method), an error in the program (the expression of the algorithm in the chosen

211

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 H

o
w

 t
o

 r
e

m
o

te
ly

 o
p

e
ra

te
 a

 v
e

h
ic

le
L

e
v

e
l

3
 -

 S
e

q
.1

language, such as a syntax error), or an equipment failure (related to a broken part in the
machine or an error in transferring the instructions, such as in this activity).

Teaching notes

•	 The word “bug”, first coined by Thomas Edison, began being used in the field of
computer science after computer scientist Grace Hopper found the cause of a computer
malfunction: an actual insect found in the machine’s inner workings. Read more about
Grace Hopper on page 10.

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 In computer science, we invent and use languages.
•	 To give machines instructions, we use programming language, which can be understood

by both machines and people.
•	 A programming language is different than a natural language.

o It has very few words or grammar rules.
o It leaves no room for ambiguity.

•	 There are several programming languages, created for different uses.
•	 A bug is an error in a program.
•	 A bug that seems minor can have major consequences.

Students write down these conclusions in their science notebook. The teacher prepares a poster
called “Defining computer science?”. This poster will be completed during the project and will
provide a general overview of this field (key ideas of language, algorithm, program, machine,
data, etc.). They start by copying what the class learned about the notion of language during
this lesson.

Further study (unplugged, Level 4)

This lesson can be extended with an exercise where pairs translate one language into
another:

•	 Translate this series of instructions: North, West, North, East, East, East, South, East,
South, West, West, North, North” (allocentric language) into an autocentric expression.
Use a piece of grid paper to check that both expressions lead to the same result.

•	 Translate (for a rover initially facing North) this series of instructions: Right, Forward,
Forward, Left, Forward, Left, Forward, Forward, Forward, Forward, Right, Forward into
an allocentric expression and check the result on a piece of graph paper.

If the students finish this activity quickly, have them write the following notion down in their
science notebooks:

•	 We can translate the same instructions from one language to another.

212 Pedagogical Module

HANDOUT 28

Operating a vehicle remotely

Instruction: Write a series of instructions to make the vehicle follow the red route square by
square to return to base.

Instruction: Write a series of instructions to make the vehicle follow the red route square by
square to return to base.

213

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 2

 -
 H

o
w

 t
o

 e
n

c
o

d
e

 a
 m

e
s

s
a

g
e

 w
it

h
..

.
L

e
v

e
l

3
 -

 S
e

q
.1

Lesson 2 - How to encode a
message with numbers

Summary Students must encode a textual message using only numbers. To do
this, they make suggestions and then create a correspondence table
for the letters and numbers for use by the entire class. They use this
table to encode a message that they send as well as to decode a
message they receive.

Key ideas

 (see Conceptual scenario, page 204)

“Information”
•	 A letter can be represented by a number.
•	 A text, which is made up of a series of letters, can be represented

by a series of numbers.
•	 Encoding of text refers to replacing its letters with corresponding

numbers. Decoding is doing the opposite.

Inquiry-based methods Experimentation

Equipment For the classroom
•	 Handout 29, page 218

Glossary Correspondence table, encoding, decoding
Duration 1 hour 15 minutes

Scientific notes about the vocabulary before starting

•	 In common language, the terms “coding,” “encoding,” and “encrypting” are often misused or used
interchangeably. The term “coding,” for example, is sometimes used to mean “programming”
(or “writing code”), “representing data” (for example, binary coding), or “modifying a message
to make it incomprehensible” (as in a secret “code”).

•	 Here, we will use these words according to their scientific definitions:
o Coding means to represent data. During this lesson, students will represent a worded

message using numbers. When they convert the letters into numbers, we will talk about
encoding, and when they do the operation in reverse, we will talk about decoding. This
is the aim of this lesson as well as the next two lessons on binary code.

o Encrypting a message consists in changing it to make it incomprehensible to any
unintended recipients (who do not have the key to decrypt it). This is the aim of
Sequence 3.4, page 316.

o The terms enciphering/deciphering (which we will avoid here) are generally used
as synonyms for encrypting/decrypting, even more so in the everyday language, but
there is a nuance. Cryptanalysis, or decipherment, consists in breaking the cipher of
an encrypted message (the key is guessed by someone not meant to have access to it).

Introductory question

The teacher explains to the class that the mission control team communicates with the rover
and the astronauts using electronic instruments. These instruments can only send and receive
messages in numbers, not letters. Accordingly, the entire worded message to be sent must be
converted into a series of numbers before being sent (this is the encoding operation), then
converted back into a series of letters when received (this is the decoding operation). There
cannot be any spaces or commas between the numbers: the numbers are all “stuck” to each
other.
The question is: How can you encode worded messages as numbers and then decode them?

214 Pedagogical Module

Activity: Encoding and decoding strategy (in pairs)

The teacher tells the students that the astronauts want to extend their outing past the initially
stated time. However, the wind has picked up. They need to send a message to mission control
with a message that starts with:

SEND WEATHER REPORT.
In pairs, the students try to figure out an encoding strategy for this text using numbers. They
will not encode the message at this point but must simply figure out ways to do so.

Fifth Grade class, Christelle Crusberg (Champigny-sur-Marne)

When a pair says they have figured out an encoding strategy, the teacher secretly gives each
student a slip of paper with a short worded message with a least one space or a period, such
as “GO FASTER.”, “VERY WELL.” or “EVERYTHING IS FINE.”. They ask the students to encode
the message for their partner, who must then decode it. The teacher reminds the students
that the numbers in the encoded message must all be stuck together, without any spaces or
punctuation. The two students verify whether the information has been properly transferred.
If not, the pair works to identify the problem and change or improve their strategy.

Teaching notes

•	 The text to encode should contain only letters in ALL CAPS (without any accents), periods
and spaces. Accordingly, it is likely that most of the students’ solutions will involve linking
each letter to a number in alphabetical order (1 = A, 2 = B, etc. up to 26 for Z) with
additional numbers to correspond to periods and spaces (e.g., 27 and 28 or 27 and 0).

•	 However, some groups may decide to encode using different numbers for uppercase
letters (e.g., 1 to 26) and lowercase letters (e.g., 27 to 52). The issue of accented letters
and punctuation other than periods may also arise. While the message to encode does
not contain any numbers, some groups may try to take this possibility into account. They
may decide to link the code numbers 0 to 9 to message numbers 0 to 9, with encoding
of letters starting at 10.

•	 All of these possibilities should be accepted, even if for simplicity’s sake the message
given to students will contain only letters and encoding will be identical for all variations
of a letter (e.g., A and a are both encoded using 01).

•	 Some students may attempt to encode the message by using a less intuitive

215

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 2

 -
 H

o
w

 t
o

 e
n

c
o

d
e

 a
 m

e
s

s
a

g
e

 w
it

h
..

.
L

e
v

e
l

3
 -

 S
e

q
.1

correspondence between text and numbers, or even create a system that changes on
a regular basis (e.g., one that changes every 10 letters). Tell these students to jot their
ideas down for a later lesson (Sequence 3.4, page 316).

Group discussion

During the group discussion, the teacher asks a first pair of students to tell the class their
solution. The other groups’ solutions are compared (see Teaching notes above), weighing the
pros and cons of each. Next, the class comes to a consensus: a one-to-one correspondence
table (without any ambiguity during encoding or decoding) between the letters used in the
messages and the numbers.
The correspondence table chosen for the next part of the lesson is the following (note that
the actual table used can vary from one class to another, especially with regards to spaces and
periods):

Letter A B C D E F G H
Number 01 02 03 04 05 06 07 08

Letter I J K L M N O P
Number 09 10 11 12 13 14 15 16

Letter Q R S T U V W X
Number 17 18 19 20 21 22 23 24

Letter Y Z . Space
Number 25 26 27 28

Note that the numbers 1 to 9 (corresponding to letters A to I) were written 01 to 09 so that all
numbers used to code the letters are written using the same number of figures (i.e., two). This
means that 0221 should be read as 02 21 and decoded as BU; 2201 should be read as 22 01
and decoded as VA. If letters A to I were written using single numbers 1 to 9, a text encoded as
221 could be read as 2 21 or 22 1, which could then be decoded as either BU or VA.

Discussion with students why it is important to encode the messages
using two numbers for each letter.
Fourth Grade class, Carole Vinel (Paris)

216 Pedagogical Module

Exercise - Encoding a message (in groups)

The teacher hands out the top of Handout 29 (correspondence table and Instruction 1) and asks
the students to encode the message for mission control (Instruction 1) using the correspondence
table chosen by the class.
Once the message is encoded, the teacher posts the results and announces that the message
was sent to mission control. They emphasize that the original message and the encoded message
contain the same information in two different forms.

Challenge - Decoding a message (in groups)

The teacher tells the class that they have just received a reply from mission control in an encoded
message. They now need to decode the reply.
The teacher hands out the bottom of Handout 29 (Instruction 2) and gives the students time
to decode the message.
The class shares the decoded message:
ALERT MAJOR CYCLONE. RETURN TO THE BASE. TELL EXPECTED DELAY.
The mission cannot be extended and the rover must return immediately to base.

Two decoding strategies: each letter one by one (left) or every occurrence of a letter in the text (right).
Fifth Grade class, Anne-Marie Lebrun (Bourg-la-Reine)

Teaching notes

•	 The encoding exercise and the decoding challenge can be done collaboratively: have
different students encode and decode different lines of the message and then share their
answers together with the class. However, we suggest handing out the entire message
to students as this facilitates the logistics of the lesson, allows faster students to have
work to do and gives students a complete record of what they did together.

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 A letter can be represented by a number.
•	 A text, which is a series of letters, can be represented by a series of numbers.
•	 Encoding of text refers to replacing its letters with corresponding numbers. Decoding

is doing the opposite.

217

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 2

 -
 H

o
w

 t
o

 e
n

c
o

d
e

 a
 m

e
s

s
a

g
e

 w
it

h
..

.
L

e
v

e
l

3
 -

 S
e

q
.1

Students write down these conclusions in their science notebook. The teacher adds what the
class learned about data and algorithms to the “Defining computer science?” poster.

Further study

With older students, the message to decode can be a little longer. For example, the message
below is a pangram (all letters of the alphabet are included at least once):
WARNING. MAJOR CYCLONE APPROACHING FAST. CRAZY STRONG WINDS EXPECTED. MUST
RETURN TO BASE QUICKLY. ADVISE ETA.

218 Pedagogical Module

Correspondence table for the letters in the messages and the code numbers:

Letter A B C D E F G H
Number 01 02 03 04 05 06 07 08

Letter I J K L M N O P
Number 09 10 11 12 13 14 15 16

Letter Q R S T U V W X
Number 17 18 19 20 21 22 23 24

Letter Y Z . Space
Number 25 26 27 28

Instruction 1: Use the correspondence table to encode the message for mission
control.

A L E R T M A J O R C Y C L O N E .

R E T U R N T O T H E B A S E .

T E L L E X P E C T E D D E L A Y .

--

Instruction 2: Use the correspondence table to decode the message for mission
control.

01 12 05 18 20 28 13 01 10 15 18 28 03 25 03 12 15 14 05 27 28

18 05 20 21 18 14 28 20 15 28 20 08 05 28 02 01 19 05 27 28

20 05 12 12 28 05 24 16 05 03 20 05 04 28 04 05 12 01 25 27

HANDOUT 29

Encode and Decode a message

219

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 H

o
w

 t
o

 c
o

d
e

 i
n

fo
rm

a
ti

o
n

 i
n

 b
in

a
ry

L
e

v
e

l
3

 -
 S

e
q

.1

Lesson 3 - How to code
information in binary

Summary Students must now use only two symbols (0 and 1) to transmit
messages. They explore the ways of encoding different information
(the four cardinal directions – North/South/East/West, the seven days
of the week, etc.) by combining 0s and 1s. This is binary coding.

Key ideas

 (see Conceptual scenario, page 204)
“Information”

•	 A computer represents all information using a code with only
two symbols, 0 and 1, called bits: this is binary code.

•	 Binary code makes it possible to represent all kinds of data,
especially numbers and letters.

•	 The more bits are combined, the greater the variety of
elements can be represented.

Inquiry-based methods Experimentation

Equipment For each student
•	 Handout 30, page 224

Glossary List of elements, bit, binary code
Duration 1 hour 30 minutes

Introductory question

The teacher explains to the class that electronic instruments cannot directly transmit numbers:
they transmit flows of light or electrical signals. These signals have only two states of being:
NO (no signal) or YES (signal), also referred to as 0 and 1. Students must revise their coding
system with this new limitation.
The question is: How do you encode information by using only 0s and 1s?

Activity: Find an encoding strategy using only 0s and 1s

(in pairs and as a class)

The teacher reminds the students that the rover can be operated by mission control
using the four words North/South/East/West. They ask the students to work in pairs
to find a way to transmit these four words using only 0s and 1s.

Student solutions. Fourth/Gifth Grade class, Thyphaine Collignon (Vernaison)

220 Pedagogical Module

After a few minutes, the groups share their solutions (see Teaching notes below).
The class discusses the suggestions and observes that those that work all use groupings of 0s
and 1s.

Remind the group about the importance of encoding each piece of information using the same number of numbers
for decoding. Fifth Grade class, Christelle Crusberg (Champigny-sur-Marne)

Teaching notes

•	 A first solution could be to replace:
“North” with “00”
“South” with “11”
“East” with “01”
“West” with “10”
 For this type of suggestion, each cardinal direction is coded with a pair of 0s or 1s. All
combinations of two 0s and 1s are used. It is important to tell students that each group
may have a different cardinal direction linked to a given number pair: all combinations
are valid.

•	 A second solution could be to replace:
“North” with “1000”
“South” with “0100”
“East” with “0010”
“West” with “0001”
For this type of suggestion, each cardinal direction is coded with a series of four
0s or 1s. Only certain combinations of four 0s and 1s are used (for example, the
combination 0000 is not used).

•	 A third solution could be to replace:

221

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 H

o
w

 t
o

 c
o

d
e

 i
n

fo
rm

a
ti

o
n

 i
n

 b
in

a
ry

L
e

v
e

l
3

 -
 S

e
q

.1

«North» with: «South» with: «East» with: «West» with:

1
0 0

0

0
0 0

1

0
0 1

0

0
1 0

0

For this type of suggestion, the teacher notes that it is a good idea, but that the 0s and 1s cannot be
transmitted unless they are next to each other, so they cannot be spread out. This third suggestion is
the equivalent of suggestion 2: for each cardinal direction, four 0s or 1s are transmitted, and only one
is a 1. There are four possible positions for the 1, one for each cardinal direction.

Exercise: Choosing the number of 0s and 1s to combine

in order to code the days of the week (in groups)

The teacher tells the students that all messages exchanged between the base and the rover
have dates. They need to be able to indicate the day of the week (among other information)
using 0s and 1s. The teacher asks the students to suggest a way to code the seven days of the
week using the fewest combinations of 0s and 1s possible.

 8 times Fifth Grade class, Christelle Crusberg (Champigny-sur-Marne)

Group discussion

The group discussion shows that combining three 0s or 1s (as below) is one way (of many
equivalent possibilities) to accomplish the task:

000 for Monday
001 for Tuesday
010 for Wednesday
011 for Thursday
100 for Friday
101 for Saturday
110 for Sunday

222 Pedagogical Module

There is even another combination (111) that has not been used.
The teacher guides the students in forming an oral conclusion using Handout 30 projected
and handed out to all students:
We can code the elements of a list using a series of 0s or 1s, also called bits (a contraction of
“binary digit”).

•	 With a single bit, we can code all elements on a list that has no more than two elements
(black/white or on/off are examples of lists with two elements): we link the 0 to one
element and the 1 to the other element on the list (the class writes down list examples
with two elements on Handout 30).

•	 With two combined bits, we can code all elements on a list that has no more than
four elements (e.g., North/South/East/West) because there are four different ways to
combine pairs of 0s and 1s: “00,” “01,” “10” and “11” (the class writes down examples
of lists than can be coded using 2 bits but not 1 bit on Handout 30: these lists have
three or four elements).

•	 With three combined bits, we can code all elements on a list that has no more than
eight elements (e.g., the seven days of the week), because the only eight possible
combinations of 0s and 1s are: “000,” “001,” “010,” “011,” “100,” “101,” “110” and
“111” (the class writes down examples of lists than can be coded using 3 bits but not
2 bits on Handout 30: these lists have five to eight elements).

•	 The more bits are combined, the more different elements can be represented: a
maximum of 16 elements combining 4 bits, 32 elements combining 5 bits, 64 elements
combining 6 bits, etc.

Each student writes down on Handout 30 a list that can be coded using 4 bits but not 3 bits
(the list should have between nine and 16 elements). Students may suggest the 12 months of
the year, the 10 figures 0 through 9, the 12 hours on a clock, the 10 fingers of the hands, the
names of nine of their cousins, 16 farm animals, etc.

Challenge (in pairs)

The teacher asks the students to find how many bits they need to combine to be able to code
the 26 letters of the alphabet.
After a few minutes, the group discussion will show that four bits is not enough to code the 26
letters (four bits = maximum coding of 16 elements: 2x2x2x2=16), but five bits is (maximum
coding of 32 elements: 2x2x2x2x2=32).

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:

•	 We can encode the elements on a list using a series of 0s and 1s, also called bits. This
is what is called “binary code”.

•	 The more bits are combined, the more different elements can be represented: A
maximum of two elements with one bit, a maximum of 2x2=4 elements by combining
two bits, 2x2x2=8 by combining three bits, 2x2x2x2=16 elements by combining four
bits, 2x2x2x2x2=32 bits by combining five bits, 2x2x2x2x2x2x2x2=256 bits by combining
eight bits, etc.

8 times

223

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 H

o
w

 t
o

 c
o

d
e

 i
n

fo
rm

a
ti

o
n

 i
n

 b
in

a
ry

L
e

v
e

l
3

 -
 S

e
q

.1

•	 Binary code makes it possible to represent all kinds of data, especially numbers and
letters.

•	 A computer represents all types of information using binary code.

The students write down these conclusions in their science notebook while the teacher adds this
information to the “Defining computer science” poster.

Further study (for Level 4)

In Level 4, additional attention can be paid to how to easily find all combinations of 0s and 1s
for a given number of bits. For example, if you ask students to find the 32 possible combinations
of five bits, they will realize it is very difficult to find them all without repeating some of them.
The teacher can suggest a recursive approach:

- With just one bit, the list is easy: 0, 1.
- For two bits, simply copy the one-bit list twice: once adding a 0 at the start, once adding

a 1 at the start, to get 00, 01, 10, 11.
- For three bits, the process is the same. Copy the two-bit list twice: once adding a 0 at

the start, once adding a 1 at the start to get 000, 001, 010, 011, 100, 101, 110, 111. The
process is the same for four bits, five bits, etc.

224 Pedagogical Module

Instruction: In each empty bubble, write an example of a list for which all elements can be coded
with one bit, two bits, three bits or four bits.

Challenge: Determine the minimum number of bits you need to combine to code each of the 26
letters of the alphabet.

1 bits:
0
1

3 bits:
000
001
010
011
100
101
110
111

4 bits:
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

2 bits:
00
01
10
11

HANDOUT 30

Code the elements of a list in binary

225

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 H

o
w

 t
o

 c
o

d
e

 a
n

d
 d

e
c

o
d

e
 a

 b
in

a
ry

..
.

L
e

v
e

l
3

 -
 S

e
q

.1

Lesson 4 - How to encode and
decode a binary message

Summary Continuing on from the previous lesson, students apply what they have
learned to encode a short worded message in binary code, then decode
a message in binary code they receive.

Key ideas

 (see Conceptual scenario, page 204)

“Information”
•	 Binary code makes it possible to represent all kinds of data,

especially numbers and letters.

Inquiry-based methods Experimentation

Equipment For each group
•	 Handout 31, page 228

Glossary List of elements, bit, binary code
Duration 1 hour

Introductory question

The teacher reminds the students that they have received a message from the base that a storm
is coming. The base team asked for information: the time rover will return to base.
Today, the students will code their reply in binary.

Activity: Encode a message for the base in binary

(as a class, then in groups)

The teacher notes that the message the students must send to the base has only capital letters,
spaces and periods (28 types of characters). They ask students to determine the smallest number
of bits they need to encode each letter and suggest, if necessary, to look back at their notes
from the previous lesson (Handout 30). The class agrees to limit coding to five bits per character.

The teacher hands out the top of Handout 31. They give students five minutes to create a
correspondence between characters and five-bit combinations. During the group discussion,
the class creates the following correspondence table:

5 bits 00000 00001 00010 00011 00100 00101 00110 00111
Letter A B C D E F G H

5 bits 01000 01001 01010 01011 01100 01101 01110 01111
Letter I J K L M N O P

5 bits 10000 10001 10010 10011 10100 10101 10110 10111
Letter Q R S T U V W X

5 bits 11000 11001 11010 11011 11100 11101 11110 11111
Letter Y Z . Space No meaning (these can be used for other

punctuation signs if desired)

226 Pedagogical Module

The teacher tasks the student groups with using this correspondence table to encode the
following text in binary:

TEN MINUTES

They hand out the middle section of Handout 31. The class gets:

Letter T E N M I N U T E S
5-bit group 10011 00100 01101 11011 01100 01000 01101 10100 10011 00100 10010

Challenge: Decoding a message sent by base (in pairs)

The teacher gives students the base’s final reply (Handout 31) that the students must decode:
0111001010

Dividing the message into five-bit combinations gives students 01110 and 01010, which
according to the table corresponds to the letters O and K. The message received from the base
is “OK.”

Individual exercise: Encoding and decoding binary

messages

The teacher gives the students 10 or 15 minutes to encode short messages and to pass them
to fellow students to decode. Students enjoy this activity, which helps them consolidate what
they learned in class.

CM1 class of Carole Vinel (Paris)

Conclusion

The class reviews the conclusion from the previous lesson, especially with regard to the following
idea: binary code makes it possible to represent all types of data, especially texts.

227

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 H

o
w

 t
o

 c
o

d
e

 a
n

d
 d

e
c

o
d

e
 a

 b
in

a
ry

..
.

L
e

v
e

l
3

 -
 S

e
q

.1

Further study (unplugged)

To help students better understand why electronic instruments often require binary data
representation, an analogy can be made using electric circuits that include the same number
of light bulbs as the number of bits used for coding. Each bulb is linked to a switch. You can
place each switch in an open/closed position (either 0/1 or OFF/ON). These are the only two
states possible for a switch. For electronic devices, the electronic components are not light
bulbs or switches, but they work in a similar way: they can be powered via electricity or not. It
is practical to distinguish between these two states and coding information in binary.

228 Pedagogical Module

Instruction

Suggest a correspondence table: fill in the table below by linking each five-bit combination to a
character:

5 bits 00000 00001 00010 00011 00100 00101 00110 00111
Letter

5 bits 01000 01001 01010 01011 01100 01101 01110 01111
Letter

5 bits 10000 10001 10010 10011 10100 10101 10110 10111
Letter

5 bits 11000 11001 11010 11011 11100 11101 11110 11111
Letter

This is the correspondence table we will use going forward:

5 bits 00000 00001 00010 00011 00100 00101 00110 00111
Letter A B C D E F G H

5 bits 01000 01001 01010 01011 01100 01101 01110 01111
Letter I J K L M N O P

5 bits 10000 10001 10010 10011 10100 10101 10110 10111
Letter Q R S T U V W X

5 bits 11000 11001 11010 11011 11100 11101 11110 11111

Letter Y Z . Space No meaning (these can be used for other
punctuation signs if desired)

Instruction

Encode the message below in binary to tell the mission control team that the rover is ten minutes
from base:
Worded
message:

T E N M I N U T E S

Message
in binary
code

Challenge: Direction

The base replied “0111001010”. Decode this message.

HANDOUT 31

How to encode and decode a binary message

229

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

im
u

la
te

 t
h

e
 m

is
s

io
n

 i
n

 S
c

ra
tc

h
L

e
v

e
l

3
 -

 S
e

q
.2

Sequence 2: Simulate the mission
in Scratch

This sequence is dedicated to programming a video game to simulate our space exploration
mission, following on from what was done in Sequence 1.

Sequence 2 is mainly carried out on the computer. However, there are a few unplugged exercises
(not using the computer) aimed at fostering understanding of certain concepts such as variables
and logical operators. These unplugged exercises should ideally take place outside of time
dedicated to programming (e.g., math or English classes), so as to avoid interrupting the project.

Some tips before beginning a programming activity

Programming a video game is highly motivating for students, but a few precautions are necessary
to ensure it goes well.

Scratch, an ideal environment for learning to code

There are a number of tools available for learning programming. We have chosen to use the
software Scratch15 on the basis of its remarkable quality, its simplicity of use, it being free of
charge, and it having a very active community, including in the education field (elementary
and middle school).

This choice is, however, arbitrary. Teachers can teach the same concepts using another
environment (such as Snap which is very similar to Scratch and is also free, or Kodu and Tangara

which must be purchased).

We also propose an alternative to Scratch “alone” in classes that have a robot whose
programming uses the same concepts but applied to a physical object. The robot Thymio, for
example, is programmed using visual programming languages like Aseba/VPL and/or Scratch

(in this regard, see Level 2, Sequence 3, starting from page 182).

Ensure mastery of some basic ICT skills

Programming requires interaction with a computer, meaning some basic skills are needed:

•	 Using keyboard and mouse (this is generally, but not always, the case taught from grade
nine)

•	 Launching programs by double-clicking on their icon
•	 Saving work in a file, and saving the file in a folder
•	 Opening work saved earlier

If certain students do not have these basic skills, they can learn them through this programming
project but may end up falling behind during the first exercises.

15 Scratch is available either online (without prior installation, but this requires a good Internet connection,
at the address: https://scratch.mit.edu) or offline (requiring prior installation, after downloading the
software at the address: https://scratch.mit.edu/scratch2download).

230 Pedagogical Module

Working in half-groups

Ideally, there should be one computer for two students (3 at most). To make that possible, and
so as to make it easier to manage classes during programming activities (during which teachers
are very busy), we advise working in half-groups: half of the class programs while the other
half works on something else independently.

Preparing the working environment

In order to save time, it is useful to prepare the working environment in advance:
•	 Scratch needs to be installed on all computers (or accessible online, see footnote on

previous page)
•	 A shortcut to Scratch should be placed on the desktop
•	 Similarly, a dedicated folder for the project (and class) should be easily accessible, either

on the desktop or on a USB flash drive for the group. This folder should contain the files
needed for the project (images to import, copies of programs, etc.). We will provide all
the files required on the project’s dedicated website (see page 342).

•	 The most advanced users will be able to put the useful files directly into the sub-folders
of the Scratch application for example:

 <Scratch>/Medias/Costumes/MissionMars and <Scratch>/Medias/Background/
 MissionMars, where <Scratch> is the application’s installation path.

Doing the project yourself first

This is probably the most important tip, even if it seems obvious. It is essential for the teacher
to take two or three hours of preparation time BEFORE the first class exercise to get used
to Scratch and carry out the tasks that the students will have to perform during the project.
Otherwise, they may not be able to help the students when they need it. This is not difficult
(you can follow the process described in this sequence), and it is even quite fun!

Steps for the project

The recapitulation table below lists the different steps and, for each step, the various tasks
that need to be carried out to build a video game. If the teacher chooses a different scenario
for the game, they will obviously have to adapt their lesson.

Please note: In most Level 3 classes, carrying out the whole project will require six or seven
one-hour sessions. Some pairs will produce a more comprehensive and complex game than
others, but they will all put together a satisfactory and fulfilling project.

We recommend holding two sessions per week, at least at the beginning of the project, to avoid
the students forgetting what they have learned from one session to the next, as programming
is a genuinely new activity for them.

231

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

im
u

la
te

 t
h

e
 m

is
s

io
n

 i
n

 S
c

ra
tc

h
L

e
v

e
l

3
 -

 S
e

q
.2

Levels of difficulty

To help give an idea of the difficulty of the various steps and activities, we use color-coded
symbols:

Green activity: easy. All students should manage without difficulty.
Blue activity: medium difficulty. Most students should manage on their own, but some may
need a little guidance.
Red activity: difficult. Most students will need some guidance (more or less depending on
ability).
Black activity: very difficult. All students will need guidance. These are optional activities.

Unless otherwise stated, all the steps are plugged activities. The durations given are averages.

Step Title Page Activity

Step 1 Introduction to the Scratch
programming environment

234

Activity 0: Demonstration of the final
game by the teacher (5 minutes)
Activity 1: Opening Scratch and getting to
know its interface (10 minutes)
Activity 2: Exploring Scratch independently
(15 minutes)
Activity 3: Short exercises (20 minutes)

Step 2 Customizing the
environment and saving all
work 243

Activity 1: Changing the sprite (5 minutes)

Activity 2: Changing the backdrop
(5 minutes)
Activity 3: Saving your Scratch program
(5 minutes)

Step 3 Operating the rover

246

Activity 1: Making the rover move to the
left (10 minutes)
Activity 2: Making the rover move in any
direction (5 minutes)
Activity 3: Driving the rover using the
arrow keys (15 minutes)
Activity 4: Bouncing off the edges
(5 minutes)
Activity 5: Reset the position of the rover
(5 minutes)
Activity 6: Understanding the X and Y
coordinates of the rover (20 minutes)

232 Pedagogical Module

Step 4 Gathering resources and
managing scores

253

Activity 1: Importing a resource (ice) in the
form of a new sprite (5 minutes)
Activity 2: Making the resource say
“Well done!” when touched by the rover
(20 minutes)
Activity 3: Making the resource disappear
when touched (10 minutes)
Activity 4: Creating a “score” variable
(5 minutes)
Activity 5: Increasing the score when a
resource is gathered (10 minutes)
Activity 6: Resetting the score to zero
(10 minutes)
Activity 7: Making resources reappear in
random positions (15 minutes)

Activity 8: Importing a new resource (plant)
and repeating the same tasks as for the ice
(20 minutes)

Step 5

Plugged and unplugged
activities to better
understand certain
algorithmic concepts

This step, which is optional,
does not deal with programming
the video game and should not
interrupt it (it should be done as
a parallel activity, such as during
a math or language arts class).

260

Activity 1: Formative assessment on the
loop concept (plugged activity, 10 to 20
minutes)

Activity 2: Set of cards to consolidate the
notion of variable (unplugged activity, 1
hour)
Activity 3: A card game to work on logical
operators (unplugged activity, 1 hour)
Activity 4: Understanding that an algorithm
is not always perfect: the traveling salesman
game (unplugged activity, 1 hour)

Step 6 Avoiding obstacles and
managing player lives

277

Activity 1: Adding new sprites (5 minutes)
Activity 2: Creating and initializing a
“number of lives” variable (5 minutes)
Activity 3: Losing a life when the rover
touches the lava (30 minutes)
Activity 4: Repeat Activity 3 for the dune
(10 minutes)

Step 7 Ending the game: <<Game
over>>

281

Activity 1: Make «game over» appear
when there are no more lives (15 minutes)
Activity 2: Stopping the game when “game
over” appears (15 minutes)

233

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

im
u

la
te

 t
h

e
 m

is
s

io
n

 i
n

 S
c

ra
tc

h
L

e
v

e
l

3
 -

 S
e

q
.2

Step 8 Adding challenges

284

Activity 1: Make a countdown appear
when the game starts (15 minutes)
Activity 2: Limiting the game duration
(15 minutes)
Activity 3: Add a tornado that moves
around randomly (15 minutes)
Activity 4: Make the tornado bigger
(15 minutes)
Activity 5: Making the tornado go faster
and faster (20 minutes)
Activity 6: Simulate a torus world (joining
the edges of the backdrop) (20 minutes)
Activity 7: Preventing resources and traps
from overlapping (20 minutes)

Step 9 Further study in Scratch

292

At this stage, the project is complete.
Here we offer a few suggestions to explore other
Scratch features, which could serve to support
students’ future personal projects.

234 Pedagogical Module

Step 1 - Introduction to
the Scratch programming
environment

Summary The students learn about Scratch, a programming environment suited
to elementary school students. They learn to launch the program and
combine a few simple instructions.

Key ideas

 (see Conceptual scenario, page 204)

“Machines”
•	 The machines around us merely execute orders (instructions).
•	 By combining basic instructions, we can make them execute

complex tasks.

“Algorithms”
•	 An algorithm is a method used to resolve a problem.
•	 A loop allows the same action to be repeated multiple times.
•	 Certain loops, known as “infinite loops,” never stop.
•	 Certain loops, known as “iterative loops,” are repeated a

predefined number of times.

“Languages”
•	 To give machines instructions, we use a programming language,

which can be understood by both machines and people.
•	 Scratch is a graphical programming environment that uses a

simple language.
•	 A program is the expression of an algorithm in a programming

language.
•	 Certain instructions are only executed when an event is triggered.

This is known as event-driven programming.
•	 Certain instructions are executed one after the other. This is

known as sequential programming.
•	 The execution of a program is reproducible (if neither the

instructions nor the data to manipulate change, the program
always gives the same result).

Equipment For the class
•	 Projector
•	 Enlarged version (A3 or A4) of Handout 32 on page 242

For each pair of students
•	 A computer with Internet access or, if there is no good connection

available, a computer with Scratch preinstalled (see footnote on
page 229).

For each student
•	 Handout 32, page 242

Glossary Program, script, sprite, instruction, event
Duration 1 hour

235

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 1
 -

 I
n

tr
o

d
u

c
ti

o
n

 t
o

 t
h

e
 S

c
ra

c
th

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

Teaching notes

•	 You learn to program by programming, not by watching someone else program. It is
interesting to consider the same problem in pairs (probably more so than to program
alone), but it is important to be active. We therefore recommend placing the students in
small groups in front of computers (ideally two students per machine) and asking them
to “switch over” (pass the keyboard and mouse to their neighbor) every 10-15 minutes.

•	 If possible, we recommend organizing the class in half-groups, so as to avoid having too
many pairs to manage at once. While half the class works on Scratch, the other should
do something else independently.

•	 If possible, two Scratch sessions should be organized weekly, at least at the beginning.
•	 This step of getting to know Scratch is deliberately very directive (activities 0 and 1 are

actually a demonstration by the teacher!). It is the only step presented in this form. All
pairs will have to carry out a series of basic tasks. At the end of each activity, a group
discussion ensures that everyone has understood and knows what to do. The other
steps will be less directive, as students become more independent and progress at
their own pace.

•	 To save time, switch on the computers before the session begins.

Activity 0: Demonstration of the final game by

the teacher (5 minutes)

The teacher explains that the aim is to simulate an exploration mission (seeing as we can not
go for real) through a video game we are going to program ourselves.
From their computer, the teacher opens Scratch and shows the “final” video game (that they
have produced in advance16), simply demonstrating the game without explaining how the
program works.

Screenshot: final version of the video game produced by the teacher
(Please note: a model program and an export in Flash format are available on
the project website, page 342).

16 Reminder: it is essential for the teacher to complete the exercise before proposing it to the students! All
they have to do is follow the steps in the sequence. Teachers with no Scratch experience will need about
3 hours to do the whole project, including black activities.

236 Pedagogical Module

Teaching notes

•	 This demonstration is very important, as it is highly motivating and reassuring for students: they
are actually going to program a “real” video game! It also helps tie in this programming activity
with the unplugged activities in Sequence 1.
“Here is our rover, which we are going to learn to move. It will collect resources to allow humans
to live in the base, such as water and food (for each resource collected, the score increases).
But watch out for traps! If the rover falls into a trap, it loses a life. Once it has no lives left, the
game is over.”

•	 It is important to explain to students that such a game cannot be programmed in a single session
but will require several (typically six or seven sessions, depending on their level and ambition).

Activity 1: Opening Scratch and getting to know

its interface (10 minutes)

Each pair of students should open Scratch by double-clicking on the icon. They should cancel
any update windows.
Scratch is usually configured in English the first time it is used on a machine. If necessary,
students can change the language very easily by clicking on the globe icon (top left, next to
the Scratch logo).

The teacher should explain to the students that Scratch is a programming language designed
specifically for learners. When you open the application, there is a sprite (a cat) on the screen.
You can give it simple instructions.

237

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 1
 -

 I
n

tr
o

d
u

c
ti

o
n

 t
o

 t
h

e
 S

c
ra

c
th

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

The teacher carries out a short demonstration (at the end of the session, the students will
repeat these exercises).
For example, to ask the cat to move 10 steps, you can simply drag the instruction block “move
10 steps” from the scripts tab into the scripts area. If you then click on the block, you will see
that the cat does move 10 steps (1 step = 1 pixel on the screen).

If you want to move 20 steps, you can simply replace “10” with “20” by clicking on the number.
If you now want the cat to move 20 steps and then say “Hello!,” simply add the new instruction
at the end of the program. The instruction “Say Hello!” is located under the “Looks” category
of the scripts tab. You can replace the text “Hello!” with any words you like by clicking on it.
You can write a program simply by snapping together the instructions in order.

If you want the cat to do that each time you click on the green flag (top right of the stage; the
green flag launches the program), then add the instruction “when green flag clicked,” which is
to be found under the “Events” category on the scripts menu. The result is:

Finally, the teacher should show students how to delete an instruction (or a whole stack of
instructions): simply drag the instruction (or stack) from the scripts area towards the scripts tab.
The teacher should very briefly introduce the Scratch interface, which includes:

•	 A “stage”: this is where the “game” (or, more generally, the program – Scratch is not
only for games!) is executed.

•	 A “sprites” area: sprites are the characters or objects that are controlled in the program
(they can move, change shape, speak, interact with other sprites, etc.). When you open
Scratch, only one sprite is displayed on the screen: a cat (other sprites will be added
later, and the cat will be deleted).

•	 A “backdrops” area, right next to the sprites: the backdrop is static, unlike the sprites
that can move. Be default, the backdrop in Scratch is a plain white screen (this will be
changed later).

•	 A “scripts” tab, which offers:
•	 A scripts tab (central column, to the right of the stage). This is where the instructions

(or “blocks”) we will use to build our program are to be found. There is a wide variety
of instructions, grouped by color (e.g. anything to do with the motion of the sprite is
in the deep blue category, anything to do with its looks is in the purple category, etc.).

•	 A “scripts” area, to the right of the scripts tab. This is where the program is written, simply
by dragging and dropping instructions from the tab into this area.

•	 The other tabs (Costumes, Sounds) are not useful for now.

238 Pedagogical Module

Activity 2: Exploring Scratch independently

(15 minutes)

The students have 15 minutes to explore Scratch by themselves. For now, they should not try
to change the stage or the sprite (that’s for the next step, on page 243). They should simply try
out simple instructions and order them to see what happens. The teacher should encourage
them to explore the various categories of instructions, including:

•	 “Motion” (deep blue)
•	 “Looks” (purple)
•	 “Events” (brown)
•	 “Control” (gold)

Third-grade class of Emmanuelle Wilgenbus (Antony, France)

Teaching notes

•	 Establish a rule of taking turns from the outset, so that the same student does not
always control the keyboard and mouse.

239

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 1
 -

 I
n

tr
o

d
u

c
ti

o
n

 t
o

 t
h

e
 S

c
ra

c
th

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

Activity 3: Short exercises (20 minutes)

The teacher should give a series of short exercises (mostly going over what was done previously
in the demonstration) for the students to carry out. After each exercise, a quick group discussion
will ensure everyone knows how to do the exercise.

Exercise 1 – Make the cat move 10 steps

Exercise 2 – Make the cat move 20 steps

Two possible solutions:

 or

The second solution is better, as it is more elegant and easier to read.
Exercise 3 – Return the cat to the center of the stage

Some students will no doubt get the trick, but most will need to be shown. However, it is
essential for them to see this instruction now, as their movements will eventually send the
cat off the screen and they will not know how to get it back.
Exercise 4 – Make the cat move 20 steps and say <<Hello>>

Stress that “say” hello means “write” hello here: a speech bubble should appear on the
screen with the text “Hello!” inside – we do not want to make the cat talk!
Please note: It is possible to make the cat “talk” (play musical notes or a sound file import-
ed into or recorded in Scratch), but it is highly unadvisable in class.

240 Pedagogical Module

Exercise 5 – Repeat 3 times: Make the cat move 20 steps and say <<Hello>>

Encourage students who do not find what they need to look in the “control” category (gold).
They will find a similar instruction “repeat 10” that can easily be changed by replacing
“10” with “3.” That loop fits around the other instructions. Everything within the loop is
executed three times.
The cat stops for 2 seconds between each movement. To reduce this pause, simply shorten
the period during which it says “Hello!” (if you write 0.5 instead of 2, the cat will only stop
for half a second each time).
Exercise 6 – Repeat forever: Make the cat move 20 steps and say <<Hello>>

This is very simple to do, using the same principle as the previous exercise but with a dif-
ferent sort of loop.
Exercise 7: Same thing when you click on the green flag

All you really have to do is add the instruction “when green flag clicked” (from the “events”
category), but it is even better if you ask the cat to start again from the center of the stage.

This is when to explain the purpose of the red button (next to the green flag). Clicking on
the red button stops the execution of the program (which would otherwise never stop in
this case).

241

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 1
 -

 I
n

tr
o

d
u

c
ti

o
n

 t
o

 t
h

e
 S

c
ra

c
th

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

Review and conclusion

The class summarizes together what they learned in this lesson, including by listing the Scratch

instructions they now all know.
•	 move 10 steps
•	 go to x: _ y: _
•	 say Hello! For 2 secs
•	 repeat 10
•	 forever
•	 when green flag clicked

It can be very useful for students to color the Scratch instructions one by one as they discover
and understand them. After each new step, you can therefore see the progress of each pair
and the whole class.

Handout 32 “Some useful Scratch instructions” on page 242 can be photocopied for each student
and enlarged for the class. This handout will be enriched later, once students have used tests
(page 254), sensors (page 254), variables (page 256) and operators (page 258).

242 Pedagogical Module

HANDOUT 32

Some useful Scratch instructions

243

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 2
 -

 C
u

s
to

m
iz

in
g

 t
h

e
 e

n
v

ir
o

m
e

n
t

a
n

d
..

.
L

e
v

e
l

3
 -

 S
e

q
.2

Step 2 - Customizing the
environment and saving all work

Summary The students learn to customize Scratch (sprite and backdrop) and save
their work to be used again later.
They discuss the different steps they will follow to create their video game.

Key ideas

 (see Conceptual scenario, page 204)
Same as previous session

Equipment Same as previous session

Teaching notes

•	 The purpose of this teaching guide is to teach Computer Science (more specifically
programming, here). We will not, therefore, describe possible extension activities such as
those that can be done in art or ICT class to design a personalized rover or backdrop for
our video game. In this step, we propose simply to import components that we provide
for classes. That has two benefits: it saves time and generates a degree of consistency
between the students’ programs, making it easier to compare them.

•	 Of course, the teacher can decide to spend an hour in class with the students designing
these items. In this case, you need to be careful about the backdrop: it has to be relatively
uniform, as decorative elements (obstacles and resources) will be added later in the
form of other sprites.

Activity 1: Changing the sprite (5 minutes)

The teacher explains that it is possible to get rid of the “cat” sprite and create another in its
place that fits in better with our space mission project: a rover.

•	 To delete the cat, right-click on its icon in the sprites area and select “delete.”

•	 There are four different ways to create a new sprite, which are accessible from the “new
sprite” toolbar, to the bottom right of the stage (the method we recommend here is
described in bold).

244 Pedagogical Module

Choose sprite from library

Scratch comes with a library of about 100 predefined sprites. These sprites can be practical
for students’ projects, but have very mixed styles.
Paint new sprite

Scratch has an integrated drawing tool that students can use to create their own rover “by
hand.”
Upload sprite from file

This is the option we recommend here, as the aim of this project is not to teach drawing on
the computer, but to teach programming.
We recommend teachers provide the files required for the project (in this case, the rover) in
a folder that is easily accessible for the students.4

There are two options for the rover: a “square” rover and a more elongated one. We will be
using the latter in the screenshots.
New sprite from camera

This can be a very practical tool for personal projects (you can add your own face as a new
sprite), but it is not useful for this project.

Teaching notes

•	 We have noticed that there can be problems importing the sprite from a file on certain
computers. If the import fails, there is a very simple way to fix the problem: save all
ongoing work, close Scratch, reopen Scratch, and try importing again. After that little
workaround, it works!

Activity 2: Changing the backdrop (5 minutes)

Similarly to above, it is possible to change the stage’s backdrop, using an image from the library
or an image from a file provided by the use, or by painting a backdrop yourself.

We recommend choosing the option “Upload backdrop from file,” selecting the file martian_
soil.png (from the “Stages” folder in the files provided). Here is a preview of the rover, on the
chosen backdrop.

245

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 2
 -

 C
u

s
to

m
iz

in
g

 t
h

e
 e

n
v

ir
o

m
e

n
t

a
n

d
..

.
L

e
v

e
l

3
 -

 S
e

q
.2

Activity 3: Saving your Scratch program

(5 minutes)

The teacher explains that the current program has to be saved (even if there is not yet much
in there) to avoid having to redo everything during the next step.

Option 1: Scratch installed locally Option 2: Scratch used online

Save by opening the “file” menu and then on the
option “save.” Then browse to the folder used
for the project and class (once again, we strongly
recommend a Desktop shortcut) and choose a
filename.
This filename could, for example, contain the
students’ names, so that they can easily find their
own programs later.

Import by either double-clicking on the saved file
(which opens Scratch) or by opening Scratch and
then clicking on “file” and the option “open.”

Save by opening the “file” menu and then on
the option “Download to your computer.”

You can import your file later from the same
menu by clicking on the option “Upload from
your computer.”

Review and conclusion

The class goes over what it has learned to do in Scratch: importing sprites and backdrops, and
saving and resuming work.

The teacher can show the demonstration of the “final” game again, so as to help the students
visualize the activities they still need to complete. For example:

•	 Driving the rover using arrow keys
•	 Importing other sprites as resources and obstacles
•	 Making the player win points for collecting resources, and lose lives when they hit

obstacles
•	 Making resources disappear once they are collected and reappear elsewhere on the

screen (at a random position)
•	 Make a tornado move randomly around the stage
•	 Make the game end when the player has no lives left (with the text “Game Over” that

appears, and all the rest disappearing).
Other activities are also possible:

•	 Adding a countdown to spice up the game (collect as many resources as possible in a
given time)

•	 Personalize the game by painting your own sprites and backdrop
•	 Etc.

These steps will be looked at again later, and broken down into basic tasks where necessary.
Each pair can move forward at their own pace, as the main thing is to have a playable game at
the end of the project.

246 Pedagogical Module

Step 3 - Operating
the rover

Summary The students create their first program, letting them operate the rover
using the arrow keys. They learn about the coordinates system.

Key ideas

 (see Conceptual scenario, page 204)
Same as previous sessions

Equipment Same as previous sessions
Plus, for each student:

•	 a photocopy of Handout 33, page 252

Once each pair has successfully imported their program (which so far contains only the rover
and backdrop), the class goes back over the list of steps needed to program the video game. The
first thing to do is to drive the rover. The simplest way is to drive the rover using the keyboard
arrow keys.

Teaching notes

•	 The students will again need to be guided during this step. They will then have learned
the reflexes they need to be more independent, and each pair can progress at its own
pace.

Activity 1: Making the rover move to the left

(10 minutes)

The students already know how to move the rover to the right: they just have to tell it to move,
as it faces the right by default. Moving it to the left is a little more difficult, as the students first
have to ask the rover to point to the left before moving.

They should work independently and feel their way through, with the teacher regularly checking
in on groups to ensure nobody is stuck. The teacher can guide them by suggesting looking for
a “point” instruction.

Teaching notes

o There are two instructions of this type:
o “Point towards,” which does not help us as the only available option when

you click on the little arrow is “mouse-pointer”
(meaning the sprite would point towards the
position of the mouse pointer).

o “Point in direction...,” which is what we need
here. When you click on the number in the
instruction (the default number is generally “90”),
a help bubble explains that the angle 0 is the top
of the screen, 90 is the right, etc.

 So here, you need to choose <<Point in
 direction -90>>

247

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 3
 -

 O
p

e
ra

ti
n

g
 t

h
e

 c
a

r
L

e
v

e
l

3
 -

 S
e

q
.2

In the end, the program to move the sprite towards the left is:

Activity 2: Making the rover move in any

direction (5 minutes)

The students should now be able to move the rover in any direction (right, left, up and down)
using exactly the same method described above.

Please note: You now need the instruction “point in direction 90” to tell it to go to the right,
as the rover no longer points in that direction by default.

Activity 3: Driving the rover using the arrow

keys (15 minutes)

The students will now make the rover move when they press the arrow keys on the keyboard.
They should try to work out how independently. Some will remember the instruction “when
green flag clicked,” which they saw during the first Scratch session. That was an event that
triggered an action.

Here too, an event is needed: the action is triggered when a key is pressed. The command
“when (space) is pressed” is what we need, except “space” should be replaced with one of the
arrow keys (right arrow to move to the right). That is done the same way as before:

248 Pedagogical Module

In the end, the rover’s scripts area will contain four scripts, each describing movement in a
specific direction. The program may look like this:

Teaching notes

•	 You can see here that several scripts can co-exist in the same program. Each is executed
when the trigger event (here, a key press) is detected.

•	 Some students may panic, thinking that their program has disappeared following a
misstep. That is generally not the case (the program is not deleted). They have simply
clicked on the stage (which has its own scripts area, but which is empty because we
have not put anything in there yet) instead of the sprite. Sometimes, they have clicked
on the sprite, but have clicked on the “costumes” tab instead of the “scripts” tab. All
they have to do is click again on the sprite, and then on the “scripts” tab to display the
program once more!

Fourth-grade class of Caroline Vinel (Paris)

Activity 4: Bouncing off the edges (5 minutes)

The students work out how to make the rover bounce of the edges of the stage. For example,
if the rover drives towards the right and reaches the right-hand edge of the screen, it has to
bounce back so as not to leave the screen.

249

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 3
 -

 O
p

e
ra

ti
n

g
 t

h
e

 c
a

r
L

e
v

e
l

3
 -

 S
e

q
.2

That is very easy to do, by adding the instruction “if on edge, bounce” to each of the scripts
produced previously. For example:

Activity 5: Reset the position of the rover

(5 minutes)

The teacher reminds the students that, when you start the program (green flag), the rover
should be situated at the center of the screen. The students easily remember the instructions
they saw during the first Scratch session.

Teaching notes

•	 You can now launch the program by clicking on the green flag. If you prefer, you can
hide programs during execution by clicking on the “full screen” button at the top left
of the stage.

•	 Always remember to save your work! (see page 245).

Activity 6: Understanding the X and Y

coordinates of the rover (20 minutes)

The previous activity demonstrated the X and Y coordinates of the rover, through the instruction
“go to X: ... Y: ...” The next steps (resources, traps, etc.) will require students to make use of
these coordinates, so it is important to understand how they work.

The teacher asks the students to observe the X and Y coordinates displayed at the bottom right
of the stage. They will notice that the coordinates displayed change depending on the position
of the mouse.

250 Pedagogical Module

•	 What are the values of X and Y when the mouse is at the center of the stage? (answer:
X=0, Y=0)

•	 And when the mouse is at the right-hand edge? (answer: X = 240. Y can have any value,
depending on the position of the mouse)

•	 And when the mouse is at the left-hand edge? (X=-240)
•	 And when the mouse is at the top edge? (Y = 180) or at the bottom edge? (Y=-180)

Together, the class concludes that X indicates the position on the horizontal axis (imaginary,
invisible axis) and that Y indicates the position on the vertical axis (also imaginary).

The students may realize that, in the “motion” category of the scripts tab, many instructions
use the X and Y variables. In these cases, it is not a question of the position of the mouse, but
of that of the selected sprite. The rover has its own set of X and Y variables.

The teacher can hand out Handout 33 to each student and suggest some little exercises:
•	 Place the sprite on the stage, at the coordinates X =100, Y = 100
•	 What happens if you add 50 to X? Where is the sprite now?
•	 And what if you now set Y to 0? Where is the sprite?

Teaching notes

•	 To help students understand these coordinates, the teacher can draw a parallel with
what the students have already seen in geography: latitude and longitude. Here, the unit
is no longer the degree (we are not using angles), but the pixel. Similarly, in a game of
battleships, ship locations are identified using two coordinates (a letter and a number).
Give or take the unit or symbol, this is exactly the same: identifying the position of a point
on a surface, which requires two coordinates as a surface is a two-dimensional space.

•	 Similarly, it may be useful for certain students to use concrete examples to demonstrate
negative numbers. There is no shortage of examples, from dates and temperatures
(what is “-10°C”? Is it hotter or colder than “0°C”? And is “-20°C” hotter or colder than
“-10°C”?).

Conclusion and lesson recapitulation activity

At the end of this session, it is important to recapitulation the new Scratch instructions the
students have learned to use:

•	 Point in direction (90)
•	 When (space) key pressed
•	 When (green flag) clicked
•	 Go to (X =…, Y = …)

The students should color these instructions on Handout 32 (page 242) which they have already
used.
Moreover, this session is an opportunity to step back from programming activities and go back
over a few concepts:

•	 A program is an algorithm expressed in a special language, known as a programming
language. These are comprehensible by both machines and human beings.

251

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 3
 -

 O
p

e
ra

ti
n

g
 t

h
e

 c
a

r
L

e
v

e
l

3
 -

 S
e

q
.2

•	 The execution of a program is reproducible (if neither the instructions nor the data to
manipulate change, the program always gives the same result).

•	 Computers merely execute the instructions they are given, no more, no less.
•	 The position of an item on the screen is identified using two coordinates. In Scratch, they

are called X and Y. X varies between -240 and 240, while Y varies between -180 and 180.

The students write down these conclusions in their science notebooks. The teacher updates
the “Information” section of the poster entitled “Defining computer science.”

252 Pedagogical Module

HANDOUT 33

X and Y coordinates in Scratch

253

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 4
 -

 G
a

th
e

ri
n

g
 r

e
s

o
u

rc
e

s
 a

n
d

 m
a

n
a

g
in

g
..

.
L

e
v

e
l

3
 -

 S
e

q
.2

Step 4 - Gathering resources and
managing scores

Summary Students complete their program by adding resources to gather (new
sprites) and creating a variable for their score (this score increases
as more resources are gathered). They learn to program conditional
instructions (if ... then) and use sensors.

Key ideas

 (see Conceptual scenario, page 204)

“Algorithms”
•	 A loop allows the same action to be repeated multiple times.
•	 A test can be used to choose which action to carry out if a

condition is true or not.
•	 A condition is an expression that can be either true or false.

“Machines”
•	 A variable is a name given to a memory area. It is used to store

a value and reuse or change it later.

“Languages”
•	 Certain instructions are executed at the same time as others.

This is known as parallel programming.

Equipment Same as previous sessions

Glossary Loop, test, sensor, random number

Teaching notes

•	 This is the project’s central step, as students will have to discover and use a number of
new concepts to manage resources: tests, variables, sensors and operators.

•	 In order to avoid tackling all these new ideas at once, we suggest splitting the step into
several basic tasks. Even then, activity 2 is relatively complex and will require guidance
from the teacher.

•	 From now on, it is unrealistic to expect all students to progress at the same pace
(otherwise, the most advanced groups will quickly become bored and distracted).
Breaking down learning into steps and tasks helps facilitate the teacher’s management
of the class: everyone has something to do, whatever stage they’re at.

•	 We recommend putting together pairs with a similar level rather than pairs where a
struggling student and a more advanced student work together (as in the latter case,
experience has shown that struggling students become passive and let the others do
the work).

The teacher explains that the mission has to collect various resources to survive, including
water (in the form of ice, on this planet) and food (in the form of plants). The rover will have
to pick them up, and a “score” will be used to count the number of resource items collected.

254 Pedagogical Module

Activity 1: Importing a resource (ice) in the form

of a new sprite (5 minutes)

The students return to the program they saved during the previous session and import a new
sprite: the ice (image available in the “Sprites” subfolder of the files provided, as previously).
The teacher reminds the students to manually set the position of this resource, as they did for
the rover in the previous session. They can position the ice anywhere on the stage, so long as
the sprites (ice and rover) do not overlap.

For example:

Teaching notes

•	 Here we notice that each sprite has its own scripts area (switch between the rover
program and the ice program by clicking on the sprite in question). There can be as
many programs as there are sprites: all programs are executed in parallel.

Activity 2: Making the resource say <Well

done!> when touched by the rover (20 minutes)

Each pair needs to amend the ice program so that it says ”Well done!” when it is touched by
the rover. The teacher should let them try to work it out, then check on the groups to guide
them if they get stuck.

This task involves:
•	 Knowing how to make the sprite say “Well done!”

(all the students know at this stage)
•	 Knowing how to launch an instruction only once a given

condition is fulfilled. That is done via the “Control”

category, where the instruction “if ... then” is to be found
•	 Knowing how to detect when one sprite touches another.

That is done via the “sensing” category of the scripts tab
(“touching ... ?” instruction). Once the instruction has
been selected, clicking on the arrow opens a list of the
sprites already created. Here, we are in the ice program
and want to test whether this sprite is touching the rover,
so we click on “rover.”

255

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 4
 -

 G
a

th
e

ri
n

g
 r

e
s

o
u

rc
e

s
 a

n
d

 m
a

n
a

g
in

g
..

.
L

e
v

e
l

3
 -

 S
e

q
.2

The ice sprite program then becomes:

Unfortunately, when you execute the program and the rover is driven towards the ice, it does
not work. Why? The class can discuss together what the program does, step by step:

•	 The ice is placed in the chosen position
•	 A test is carried out: if the ice touches the rover, then it says “Well done!”
•	 Then ... nothing.

When reading the program, we notice that the test is only carried out once, when the program
is launched (just after setting the position of the ice). But at that moment, the two sprites are
not touching. So the “Well done!” message is not displayed, which is normal.
For the program to work properly, the test “if the ice is touching the rover” has to be carried
out constantly, so as to trigger the desired action as soon as the condition is met.

To do that, simply place the test within a “forever” loop, which is to be found in the “Control”
category. The ice program becomes:

Activity 3: Making the resource disappear

when touched (10 minutes)

This very simple task simply requires replacing the instruction “‘say Well done!’” with an
instruction that makes the sprite disappear. The instruction in question is “hide” which is to
be found in the “Looks” category.

Please note: Once the program is launched, the resource is now always hidden (because we
have not told it to come out of hiding!). It is therefore needed to add the instruction “show”
just after the instruction “when green flag clicked.”

256 Pedagogical Module

The ice program becomes:

Activity 4: Creating a <score> variable

(5 minutes)

The teacher reminds the students that they need to create a score and increase it each time
a resource is touched. The students can explore the various categories of instruction: the one
they are looking for is in the orange “Data” category, and called “Make a variable.”

Teaching notes

•	 The variable created may be accessible either to only one sprite (the one in the program
within which it was created) or all sprites. In other programming languages, these are
known as local and global variables, respectively.

•	 For a program to be easy to understand, it is important to give explicit names to the
variables you create. This good practice also limits programming bugs. The name of the
variable could, therefore, be simply “score.” Some students use names that have no
meaning, or which demonstrate confusion between the variable and operations using
the variable (for example, they might call the variable “add 1 to score”).

•	 When the variable is created, it is displayed on the screen, alongside its value. To get
rid of this display, simply untick the box to the left of the variable name, in the “data”
category.

Here, the aim is to keep a score. This variable no doubt needs to be used by several sprites (the
various resources), so it needs to be accessible to all of them.
The teacher should point out to the students that they have already used variables in previous
sessions (the X and Y coordinates that give the position of the sprite on the stage). These

257

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 4
 -

 G
a

th
e

ri
n

g
 r

e
s

o
u

rc
e

s
 a

n
d

 m
a

n
a

g
in

g
..

.
L

e
v

e
l

3
 -

 S
e

q
.2

variables were already available and the students used them (carried out tests, set values, etc.)
without having to make them.

Activity 5: Increasing the score when a

resource is gathered (10 minutes)

The students decide how the score should be increased (for example, it could increase by 1
every time the rover touches a resource).

Then, the students should look for an instruction to increase the score by 1:

They simply need to place it in the ice program, within the test “touching rover?”, just above
or below the instruction “hide.”

Teaching notes

•	 The variables X and Y, which are pre-existing and relate to the position of the sprite, are
available in the “Motion” category, along with the instructions relating to them (setting
a value, increasing the value, etc.). The variables created by the user, like the score here,
are in the “Data” category. There are two instructions relating to them:

o “set “score” to (...)”: this command can be used to store the value zero in the
“score” variable. The zero can be replaced by any other value.

o “change “score” by (...)” this command takes the previous value of the variable
“score” and adds 1: this new value is now saved in the “score” variable. This is
the instruction we need here.

•	 To get familiar with these instructions, we recommend letting students try them out
for a few minutes, with the variables they are using displayed.

•	 There is an unplugged activity to better understand the use of variables (see page 262).

258 Pedagogical Module

Activity 6: Resetting the score to zero

(10 minutes)

The students test several times what happens when the rover touches the ice. The program
seems to work (the ice is present, the rover touches it, the ice disappears and the score is
increased by 1). However, if you stop the program and start it again, the score does not return
to zero.
To reset the variable to zero, simply add the instruction “set score to 0” at the beginning of
the program.

Teaching notes

•	 On the face of it, it should be possible to reset this value in the program of any sprite:
the important thing is for it to be done once, and only once. But the score is a variable
that will no doubt be used by other sprites (plant, when we add it). There is no reason
to choose the ice sprite over a plant one. That is why we recommend resetting the
variable in the rover program (which is our “main” program), just below the resetting
of its position.

•	 You can also decide that the main program is that of the backdrop and not that of a
sprite. In that case, you can put all the resets in the backdrop, under a “when green
flag clicked” instruction.

•	 When you create a variable, it is a good idea to get into the habit of resetting it straight
away.

Resetting the position of the rover and the score in the rover program.

Activity 7: Making resources reappear in

random positions (15 minutes)

The game can be more fun if the resources reappear after being gathered, but not always in
the same place. A random position is best. That means using the instruction “go to,” which the
students already know, as well as a new instruction available in the green “Operators” category.
This new instruction is called “pick random ... to”
As the X axis in Scratch varies between -240 and +240, and the Y axis between -180 and +180,
the following command is used to position the sprite at a random position on the stage:

259

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 4
 -

 G
a

th
e

ri
n

g
 r

e
s

o
u

rc
e

s
 a

n
d

 m
a

n
a

g
in

g
..

.
L

e
v

e
l

3
 -

 S
e

q
.2

There is no longer any need to hide the sprite, as it is simply moved. The ice program becomes:

It is also possible to make the initial position of the resource random rather than fixed (at X=126
and Y=87 in our example).

Teaching notes

•	 Teacher guidance can be quite free. For example, you could have a student recapitulation
the values between which X and Y vary, or find other examples in daily life were random
things are needed (dice rolls, card games, national lottery, etc.) .

•	 Students will then look in the “Operator” category for the instruction that gives a random
value between -240 and 240 (for X) and between -180 and 180 (for Y). They should find
that without any difficulty.

Activity 8: Importing a new resource (plant)

and repeating the same tasks as for the ice

(20 minutes)

The students now need to add a second resource (plant) and repeat the work done for the ice:
•	 Import the “plant” sprite
•	 Constantly test whether this sprite touches the rover, and if yes:

o Increment the score by 1
o Make the sprite reappear elsewhere on the stage (random position)

This activity is very useful for students as it allows them to repeat and consolidate the various
concepts already seen.

Conclusion and lesson recapitulation activity

The class summarizes together what they have learned in these various tasks:
•	 It is possible to create variables in a program. It is best to reset each variable, meaning

to give it a value when the program is launched.
•	 A computer program can generate random numbers. This means that each execution

can give a different result.
The students write down these conclusions in their science notebooks. The teacher updates
the poster entitled “Defining computer science.”

260 Pedagogical Module

Step 5 - Plugged and unplugged
activities to better understand
certain algorithmic concepts

Summary Alongside their programming activity, students deepen their
understanding of certain algorithmic concepts introduced during Step
4: variables, tests, loops, logical operators and even the notion of
algorithm.

Key ideas

 (see Conceptual scenario, page 204)

“Algorithms”:
•	 A loop allows the same action to be repeated multiple times..
•	 A test can be used to choose which action to carry out if a

condition is true or not.
•	 A condition is an expression that is either true or false.
•	 We can use logical connectors such as AND, OR and NOT to

create logical expressions.
•	 Sometimes, we settle for an algorithm that does not offer a

perfect solution.

“Machines”:
•	 A variable is the name we give to a memory area. It is used to

store a value and use it later or modify it.

“Machines”
•	 For certain tasks, computers are much faster than people.

Inquiry-based methods Unplugged activities (as well as a plugged activity)
Equipment For Activity 1 (formative assessment of the loop concept)

•	 Computer room
For Activity 2 (set of cards to consolidate the notion of variable):

•	 For each group of 8 students:
• 4 whiteboards, 4 markers, 4 cloths
• 1 set of cards (cut out) from Handout 34, page 272, and

Handout 35, page 273 (for greater durability, use cardstock)
• A 6-sided die

For Activity 3 (game to work on logical operators)
•	 For each student:

• Handout 36, page 274
•	 For each group of 4 students:

• Handout 37, page 275
For Activity 4 (traveling salesman game)

•	 (Optional) for each group
• An 8 x 8 x 8-inch board (preferably) with around 20 nails

driven in (as straight as possible) randomly.
• A 2 1/2-yard-long string, tied to one of the nails
• A felt-tip pen

•	 For each student
•	 Handout 38, page 276

Glossary Loop, variable, test, condition, logical expression

261

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 5
 -

 P
lu

g
g

e
d

 a
n

d
 u

n
p

lu
g

g
e

d
 a

c
ti

v
it

ie
s

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

Foreword: When to do these activities

This step is different than the others in that the tasks are not required to program the video
game. Rather, they are a series of activities (most are unplugged) designed to review certain
algorithmic concepts used during the programming activity.
These activities are completely independent of each other and are optional: you can continue
the project without doing them.
To not lose momentum on the project underway (video game programming in Scratch), we
suggest doing the unplugged activities suggested here during another lesson slot than that
reserved for programming. Ideally, they should be done during a Language Arts or Math class.
Activity 1 (plugged) can easily be incorporated into a programming lesson (simply spend ten
minutes on it before going back to the project).

Activity 1: Formative assessment on the loop

concept (plugged, 10 to 20 minutes)
It is strongly recommended to do this activity after Step 4, during which students will have dealt
with loops several times in Scratch. This loop concept can be consolidated through a series of
short formative assessment exercises. These will also let students further explore the loops
available in Scratch (because the ones we use in our program are “infinite” loops, but others
do exist!).

All of this is available in Level 2 with Scratch Junior (see Lesson 2.3, page 149), you can have
students simplify the programming code by using loops. The program below (on the left) has
a sprite draw a square. The program on the right gets the same result using a loop. Depending
on students’ levels, you can have them create the program on the right by themselves or give
them all of the necessary elements unlinked and out of order and have them put everything
in order so the program provides the same result as the one on the left.

This sprite draws a 100 pixel square. This program does exactly the same thing
using a loop.

262 Pedagogical Module

We suggest the teacher to repeat this type of exercise as many times as necessary for
students to gain a good grasp of what loops are and how they work.

Activity 2: set of cards to consolidate the

notion of variable (unplugged, 1 hour)

This activity tackles the notion of variable through a card game. It is a good idea to let students
play this game several times because they begin to develop complex strategies. It can be played
during lessons designed to work on mental calculations (scoring), Language Arts (work on card
meanings), or tutoring work in small groups of 8 or 16 students. If the activity is done as a
class, discuss what all the cards mean before starting. If done with smaller groups, explain the
meanings of any specific cards that pose a problem.
The variables dealt with during the game are the players’ scores. Certain cards affect these
scores. When students are learning to play the game, only cards that make basic changes to
scores are included. More complex cards can then be introduced, including those that change
scores depending on certain conditions.

Introductory question: Game presentation

Nights are long at the planetary base. Once the explorers have finished their work for the day,
they relax by playing indoor sports or board and card games. Their favorite game is a card game
the students are going to play. The game is played with four teams (ideally pairs) named A, B,
C and D. Set up workspaces with eight students. Each team must try to score as many points
as possible as follows:

- Teams A, B, C and D all start the game with 1 point, written on a whiteboard.
- Each team is dealt four cards and the remaining cards are stacked face down (the

draw pile).
- The students look at their cards without showing them to the other teams.
- Each team takes a turn and decides to choose one of their four cards. They read it

out loud, place it face side up on the table, and follow the instructions. Some of these
instructions affect the score of one or more teams. Any changes are noted on the
whiteboards.

- When all the cards have been played, the team with the most points wins.

The teacher gives an example on the board: they draw an aerial view of teams A, B, C and D
around a table, with their starting scores of 1. Out loud, they read (or have a student read) a
card played by team A, asking the class how the scores will change based on the card instruction.
The scores are updated with the changes. The teacher then reads (or has a student read) a
card played by team B and so on. They continue as long as necessary to make sure the entire
class understands.
Alternative: You may decide to set up the game as a joint effort. In this case, the four teams at
a workspace work together, without telling each other what cards they have in their hands, to
get their final scores as high as possible.

263

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 5
 -

 P
lu

g
g

e
d

 a
n

d
 u

n
p

lu
g

g
e

d
 a

c
ti

v
it

ie
s

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

Game with cards 1 to 24

The students play the game with cards 1 to 24 only from Handout 34. The cards that affect the
scores explicitly give the name of the teams’ scores to change (A, B, C and/or D) and the score
changes do not depend on conditions.
During the group discussion, the teacher asks students if their scores stayed the same during
the game or if they changed. They introduce the adjective “variable” but not as it relates to
computer science. The class discusses the role of the whiteboard (to write down current scores
and easily change them).
The teacher can then, if the students have already used Scratch:

• Ask them to suggest a name for the scores of the four teams at a workspace, e.g., Score
A, Score B, Score C and Score D.

• Show them how to initialize the value of these four variables at 1.
• Introduce the term “variable” as it relates to computer science: a variable is a memory

area where you can save a value to reuse or modify later.
• In Scratch, begin translating the most basic cards (1 to 8 to start, and more if the class

is ready; see paragraph “Translating cards into Scratch language” below). The cards are
now replaced in the game by their Scratch version.

Game with cards 1 to 36

The students play the game again, adding cards 25 to 36 from Handout 35. Some of the new
cards designate scores to change based on a player’s position (player’s own score, score of the
person to the right or across from you, etc.). Others introduce conditions (if your score... then...).
The cards are gradually translated into Scratch to replace the physical cards with their translation.

Game with cards 1 to 48

The students play the game again, adding cards 37 to 48 from Handout 35. Two of these new
cards deal with random draws. The eight final cards should be filled in by the students.
The translation of the cards continues, without all cards needing to be translated.

Translating cards into Scratch language

Depending on how work in Scratch has progressed, certain cards will have been translated
from English into Scratch (cards 1 to 8 to start).
For example:

- Card 1 reads

- Card 5 reads

264 Pedagogical Module

- Card 9 has two options:

The translation is divided among different student groups and discussed. Note that certain
translations are somewhat complex (especially for cards from No.25) and others are impossible
(cards that do not affect the scores or where the player’s strategy depends on the context: their
score, the scores of other teams, the cards remaining in their hands).
Some cards, such as No.32, require an additional variable to store a value temporarily.

Conclusion and group discussion

The students come together as a group to summarize what they learned from the card game:
•	 During several hands, the players scores changed (they are variables). They are

memorized at each step of the game. Similarly, the position of the players on the board
game, the numbers of pawns they had, etc. were memorized and varied.

•	 In programming language, a variable makes it possible to memorize a value that can
vary while a program runs.

Further study

The students try and find different contexts in which computers used in daily life use variables
to store data:

• The time on a digital clock
• The speed of a car displayed on a digital screen
• A bank account balance

They try and find when these variables change or are used. For example, the time on a clock
changes every second, and at a certain time, an alarm goes off. A bank account balance changes
each time a withdrawal or deposit is made.

Activity 3: A card game to work on logical

operators (unplugged, 1 hour)

During the previous step, students used tests (if the rover gathers a resource, the score
increases). The teacher explains to the class that the group of words “The rover gathers a
resource” is an expression that can be true or false. This type of express is called a “condition”.
There are two parts to this activity:

•	 First, students become familiar with logical expressions by analyzing a scene (Handout
36).

•	 Next, using vignettes with conditions and logical connectors, they express the condition
that must be met for the space station alarm to be triggered (Handout 37).

 or

265

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 5
 -

 P
lu

g
g

e
d

 a
n

d
 u

n
p

lu
g

g
e

d
 a

c
ti

v
it

ie
s

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

Logic exercise (individual)

Each student receives Handout 36 and must indicate if the expression for each situation is true
or false, or if it is impossible to know.

The answers are:
•	 Expression 1: TRUE (this is rather clear)
•	 Expression 2: FALSE (clear as well)
•	 Expression 3: TRUE (a door is always either open or closed)
•	 Expression 4: FALSE (a door cannot be both open and closed)
•	 Expression 5: Impossible to know (nothing tells us the state of the door, unless we can

see it at that moment)
•	 Expression 6a: TRUE (both conditions are met at the same time)
•	 Expression 6b: TRUE (only one of the conditions needs to be verified, which is the case

here)
•	 Expression 7a: FALSE (the second condition is not met)
•	 Expression 7b: TRUE (only one of the conditions needs to be verified, which is the case

here)

The students’ compare their answers to the different expressions on the handout. The teacher
makes sure the class agrees for each expression. It is likely that the expressions with an “OR”
will be harder for the students to evaluate.

•	 For expression “A or B” to be true, only one of the two sub-expressions A and B must
be true. It is possible, but not necessary, for A and B to both be true.

•	 For expression “A and B” to be true, both A and B must be true.

If necessary, the class can invent new simple expressions to work with these logical conditions
and test if the expressions are true or false using the illustrations on Handout 3 6(or for situations
at school). If this is easy for students, present the expressions within a test rather than as
isolated examples. For example: “The school bell rings if it’s time for recess or if it’s time to go
back to class or if it’s the end of the class.”

Manipulating logical expressions: programming the

base alarm

Once students understand this concept, the teacher gives students Handout 37 and divides them
into small groups (maximum of four students per group). This handout reviews the previous
notions in the context of our scenario (exploring the planet).
The teacher gives the students the following instruction: Cut out the vignettes, then arrange
them into logical expressions. The aim is to describe a condition that will cause the space station
alarm to go off.
For example, the alarm goes off:

•	 IF “the security door is open”
•	 OR if “it’s night” AND “the rover is not at base”
•	 OR if “oxygen levels are critical” AND “the base is occupied”

266 Pedagogical Module

•	 OR if “energy is low” AND “the base is occupied”
•	 OR if “the generator is NOT working”
•	 Etc.

First, the teacher makes sure all the students understand the vignettes, whether with regard
to the conditions (cards with drawings) or the logical connectors (IF, THEN, AND, OR, NOT). The
NOT is new and should be explained. The fact that the rover is not at base is written: “NOT (the
rover is at base).” It may be necessary to have the class think of a few simple examples together,
first orally, then using the vignettes for help. Once the students understand the concept, you
can let them work on their own to find and write down other conditions.

The first condition is written:

The second condition is written:

Teaching notes

•	 The parentheses help make expressions easier to understand and are an integral part
of the syntax. Moving parentheses can change what an expression means! Students
can place their cards on a blank piece of paper and draw parentheses on the paper.

•	 Depending on how comfortable students are with the material, the teacher can ask
them to write each condition separately or write a single expression that includes
all the conditions that will trigger the alarm (all these conditions are connected by
“OR”. In this case, it may be needed to print out several copies of Handout 37 so
that each group can have more vignettes (especially the logical connectors).

For each of the necessary conditions to trigger the alarm, the teacher makes sure that the
students’ various suggestions are presented and discussed.
As a group, the class writes a single expression that includes all conditions. To make the
expression easier to read, feel free to add parenthesis and write the expression over several
lines:

ANDIF

IF THEN

THENNOT

267

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 5
 -

 P
lu

g
g

e
d

 a
n

d
 u

n
p

lu
g

g
e

d
 a

c
ti

v
it

ie
s

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

The class summarizes together what they learned in this lesson:
•	 In an algorithm, we can use tests that say which instruction should be done when a

condition is verified or not.
•	 A condition is an expression that is either true or false (but not both).
•	 We can use logical connectors such as AND, OR and NOT to create logical expressions.

Students write down these conclusions in their science notebook. The teacher updates the
“Defining computer science” poster by copying down what the class learned about the notion
of logic during this lesson.

Activity 4: Understanding that an algorithm

is not always perfect: the traveling salesman

game (unplugged, 1 hour)

Teaching notes

•	 This activity (optional) is aimed at older students (6th grade and up). It goes into greater detail
about the notion of algorithm through a simple problem: finding the shortest route that goes
by several locations. The aim is to show that sometimes a problem cannot be resolved, even if
there is an algorithm that is supposed to work. You have to settle for an approximate solution,
which may be imperfect but good enough.

•	 Here, there is a simple algorithm to resolve the problem (try all routes and choose the shortest)
but this algorithm cannot actually be implemented because the number of possible routes to
try quickly becomes massive.

Introductory question

In the previous lessons, students set up their program to be able to add another challenge: the
rover must explore the map to recover all possible resources.
The teacher explains that the rover has a limited amount of fuel left and so they need to use
as little fuel as possible. This is a “classic” optimization problem: “You know from the outset
the number and location of the resources. You must find the shortest route that still goes by all
of these resources and returns to the starting point.”
The teacher asks the students if there is a method (algorithm) that can offer a solution to this
problem. The group discussion shows that this question can be broken down into two more
specific questions:

IF

NOT AND OR NOT

AND

THEN

NOTORNOTANDOR

OR

268 Pedagogical Module

•	 Does the problem have a solution? Of the various routes that go by all the resources, is
there one that is shorter than the others (or more than one that are equally short)? The
answer to this question is yes: there are several routes possible, so there will obviously
be one (or more) that is shorter than the others.

•	 Is there a method that will allow us to definitely find the shortest route? The class can
suggest a method for finding this route: they simply need to test all the possible routes,
measure them and select the shortest one.

Depending on the available materials, the teacher can do a single activity (based on the handout)
or two activities (first the handout, then the experiment using the boards with nails).

Finding the shortest route (in groups)

The teacher hands out a copy of Handout 38 to each student (because there are so many routes
to test and draw, it is best to give all students a handout). The aim is to find all the possible routes
to find two (or three, or four) resources and measure the length of the routes using a ruler.
Note: It is assumed that the route only goes by the base twice: at departure and arrival.

Group discussion

The group discussion shows that the number of possible routes quickly increases as the number
of resources to gather rises.

•	 For two resources: If B is the base and 1 and 2 are resources, there are two possible
routes: B12B or B21B. In fact, this is the same route followed in opposite directions.

•	 For three resources, there are six possible routes, with three that are actually different:
- B123B and B321B (the same route in both directions)
- B132B and B231B (the same route in both directions)

269

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 5
 -

 P
lu

g
g

e
d

 a
n

d
 u

n
p

lu
g

g
e

d
 a

c
ti

v
it

ie
s

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

- B213B and B123B (the same route in both directions)
•	 For four resources, there are 24 possible routes, with 12 that are actually different:

- B1234B and B4321B (the same route in both directions)
- B1243B and B3241B
- B1324B and B4231B
- B1342B and B2431B
- B1423B and B3241B
- B1432B and B2341B
- B2134B and B4321B
- B2143B and B3412B
- B2314B and B4132B
- B2413B and B3142B
- B3124B and B4214B
- B3214B and B4123B

When all duplicates are eliminated, there are “only” 12 possibilities left, which is too many for
students to find all of them and draw on a single map.

(Optional) Finding the shortest route (in groups)

If there are enough boards with nails for each group, the teacher hands out the boards and asks
the students to find the shortest route possible that has the string go around each nail (and
return to the starting point). For each route tested, place a mark on the string to indicate the
total length (which should be a short as possible). This activity is similar to the previous one
except you need physical objects (nails, string) to let students easily eliminate certain “wrong”
routes and intuit what might be the “right” route.

Group discussion

This group discussion highlights several things:
•	 There are a large number of possible routes (no one will have been able to test them all).
•	 At the start of the activity, progress is significant (students find shorter and shorter

270 Pedagogical Module

routes) but then tapers off (despite multiple tests, they cut routes by only a tiny distance).
•	 Some students may believe they found THE best route. It is not possible to confirm this

statement, but you can tell them that the “right” routes are those that do not cross
over each other and limit backtracking.

Scientific notes:

•	 The number of different routes, for n resources + 1 base (or n+1 nail, for the second
experiment) is n! (which is read “factorial n”). This number is obtained by multiplying
n by all lesser whole numbers down to 1. For example:

- 1! = 1
- 2! = 2x1 = 2
- 3! = 3x2x1 = 6
- 4! = 4x3x2x1 = 24

•	 If you eliminate all routes that are identical but simply taken in opposite directions, for
n resources, this results in n!/2 number of possible routes.

•	 This function (which, for n number of resources linked to n!/2 routes) increases very
quickly:

- 5 resources: 60 routes
- 6 resources: 360 routes
- 7 resources: 2,520 routes
- 10 resources: nearly 2 million routes
- 20 resources: 1 billion billion possible routes
- 100 resources: the number of possible routes is 157 figures long!

•	 This is a “classic” algorithmic problem, known as the “traveling salesman problem.” A
salesman must visit several customers in an area. What is the shortest route to visit
each one once?

The teacher explains to the class that the number of routes increases exponentially (they
can explain that for 20 resources, there are more than a billion billion possibilities). They ask
the students if they know a device that can find the best route among several options. Some
students will likely say a GPS. By replacing resources with cities, the problem the GPS must solve
is similar (although it differs slightly – the traveling salesman must go to all the cities, whereas
a GPS must find the shortest route from one place to another, using passing through several
intermediate points). What do you do when there are thousands and thousands of cities in a
country and not just 20?
The class agrees that it is impossible to test all possible routes (even a supercomputer could
not do this test in our lifetime!). A GPS computer proceeds in a way similar to the nail/board
experiment: it determines a given route and alters it several times to reduce the route’s total
distance. When it is unable to reduce the distance by a significant amount, it stops looking and
suggests the best route from those it explored. To increase its chances, it may choose several
routes randomly and alter each of them separately.
The GPS does not necessarily suggest the “best” route possible but a “pretty good” route. It
is not surprising that two different GPS devices will suggest two different routes for a single
destination because they feature different maps (one may have more details or be more updated
than the other) and different algorithms.

271

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 5
 -

 P
lu

g
g

e
d

 a
n

d
 u

n
p

lu
g

g
e

d
 a

c
ti

v
it

ie
s

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 Sometimes a problem is so long or complicated that we have to settle for an algorithm

that provides an imperfect solution.

•	 For certain tasks, such as finding the best route from numerous possibilities, computers
are must faster than people.

Students write down these conclusions in their science notebook. The teacher updates the
“Defining computer science?” poster.

Further study

•	 Showing students The Imitation Game, which tells the story of Alan Turing’s life, can
illustrate in another context (here, breaking the Nazis’ code during the Second World
War) that is sometimes impossible to test all possibilities of a problem and that a method
must be found to restrict the problem’s size by focusing on “interesting” possibilities.
Even in the movie, the possibilities well exceeded the abilities of one or several people.
To resolve the problem, Turing and his team had to find not only an effective algorithm,
but also create a machine to run it: this machine was the precursor of today’s computers.

•	 We can compare the itineraries provided by several webmapping services (Google
Maps, Mappy, ViaMichelin, etc.) or several GPS providers and verify that these tools
do not suggest THE best route (if they did, they would all suggest the same route), but
a “pretty good” route.

272 Pedagogical Module

HANDOUT 34

Playing cards (1/2)

273

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 5
 -

 P
lu

g
g

e
d

 a
n

d
 u

n
p

lu
g

g
e

d
 a

c
ti

v
it

ie
s

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

HANDOUT 35

Playing cards (1/2)

274 Pedagogical Module

Instruction: For each of the following expressions, say whether it is TRUE, FALSE or if it is impossible
to know.

Expression 1: All cats are animals

Expression 2: All animals are cats

Expression 3: Right now, the door to the gymnasium is open or closed

Expression 4: Right now, the door to the gymnasium is open and closed

Expression 5: Right now, the door to the gymnasium is open

Expression 6:

Expression 6a: The dog is on the grass and the cat is in the tree

Expression 6b: The dog is on the grass or the cat is in the tree

Expression 7:

Expression 7a: The dog is on the grass and the cat is in the tree

Expression 7b: The dog is on the grass or the cat is in the tree

HANDOUT 36

Logical expressions

275

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 5
 -

 P
lu

g
g

e
d

 a
n

d
 u

n
p

lu
g

g
e

d
 a

c
ti

v
it

ie
s

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

Instruction: Cut out the vignettes and arrange them to create a condition that will trigger the
alarm.

HANDOUT 37

Securing the base

276 Pedagogical Module

Instruction: The rover must leave the base and gather all resources (here, ice crystals for the water
supply) before returning to base. For each of these examples, answer the following two questions:
•	 How many possible routes are there (assuming the rover drives in a straight line between

two points)?
•	 Which is the shortest route?

HANDOUT 38

Finding the shortest route

277

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 6
 -

 A
v

o
id

in
g

 o
b

s
ta

c
le

s
 a

n
d

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

Step 6 - Avoiding obstacles and
managing player lives

Summary Students now add obstacles to avoid (new sprites) and create a variable
for the number of «lives». They are again exposed to the ideas of tests,
lops and variables covered previously and deepen their understanding
of what an event is.

Key ideas

 (see Conceptual scenario, page 204)
Same as previous sessions

Equipment For each student pair
•	 A computer with Scratch and the program saved from the

previous session

Teaching notes

•	 It can be useful to occasionally show the “final” game (teacher’s version) to keep
students motivated and review the next steps. The point is not to give them the solution
by having them read the program, but simply do a demonstration of the game.

To make the space mission game more interesting, the teacher explains that the students will
need to introduce obstacles (a lake of lava, a sand dune) and a new variable: the number of
“lives.” The rover starts the game with three lives and loses one life on its way back to base
each time it touches an obstacle. The game stops when the number of lives reaches 0.

Activity 1: Adding new sprites (5 minutes)

Based on what they learned in previous lessons, the students import the three new sprites (the
base, the dune and the lava) and initialize them by setting their position in a fixed location on
the screen. They can decide, for example, to place the base in the center, which means they
will need to move the rover’s initial position (since it is already in the center).
This is not essential, but you may want to discuss the “depth” of the different sprites (rover,
base, lava, dune, plants, ice). Deciding which sprite will be in the foreground is done using the
instruction “Go to front” available in the “Looks” instruction category.

Activity 2: Creating and initializing a <number

of lives> variable (5 minutes)

The students can easily create a new “number of lives” variable with an initial value of three
(in the same place as where they initialize the score, for example, in the rover program). The
rover program now contains (in addition to the scripts to command it):

278 Pedagogical Module

Activity 3: Losing a life when the rover touches

the lava (30 minutes)

During the previous lesson, touching a resource increased the value of the “score” variable by
one. Here, touching the lava or the dune must reduce the value of the “life” variable by one.
We suggest completing the task for one of the obstacles (lava), then starting again for the
second one (dune).

Subtracting in Scratch

The students try to figure out how to control/program this reduction. There is no “subtract”
command in Scratch, only “add.” If necessary, discuss as a class that they must insert the value
-1 to subtract one.
The program for the lava is:

Provisional program for the lava

However, this program has one problem: when the rover touches an obstacle, it touches it for
a long time (a few tenths of a second, or several seconds if the user does not move). During
this time, the “life” variable continues to decrease. After a few seconds, the score will end
up being extremely negative (e.g., -4000). The only way to avoid this is to immediately break
contact between the rover and the obstacle.
Because the obstacle is in a fixed position, the rover must move. However, this cannot be done
in the program for the lava or dune: it must be in the rover program to command the rover’s
position.

279

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 6
 -

 A
v

o
id

in
g

 o
b

s
ta

c
le

s
 a

n
d

..
.

L
e

v
e

l
3

 -
 S

e
q

.2

Moving the rover

There are (at least) two solutions to this problem:
•	 Solution 1

Delete the program created for the lava (except its position initializer) and make a
similar one in the rover program. In the rover program, add a command telling it
(for example) to go back to base.
To return to base, the rover can either be told to go to (X=0, Y=0) or to go to the
position of the «base» sprite. This final solution is better because it will work even
if you decide to place the base somewhere else.

Lava program

Rover program

•	 Solution 2 (more practical for later activities)
A more elaborate solution consists in keeping the program that was created for the
lava and adding a new instruction that will send a message to the other programs
(especially the rover program). This message, in the rover program, will trigger an
action (return to base).
Like the names of the variables, the message titles should be explicit. Here, for
example, our message is «obstacle hit.»

Lava program

Rover program

The lava program sends a message to the other programs (especially the rover program).
In the rover program, receipt of the message is an event that triggers an action (going to base).

The commands that can be used to send a message or trigger an action when a message is
received are found in the “Events” category.

280 Pedagogical Module

Teaching notes

•	 A third solution is also possible: programming the rover to bounce off if it hits an obstacle
(this way, it does not remain in contact).

•	 Solution 2 is the best solution if the aim is to emphasize the “event” aspect of this
program. Each time an event happens (for example, hitting an obstacle), the program
can send a message that will be used by other programs. The idea of event was already
introduced in previous lessons (“when the top arrow is touched,” “when the green flag
is touched,” etc.), but this is the first time that students will use this new type of event:
receiving a message sent by a program.

•	 We allow the teacher to decide which method to use based on their desired focus for
the lesson: reviewing previous concepts or introducing the new idea of message. Of
course, the teacher will want to make this choice based on the ideas students come up
with and their understanding of the concepts already covered.

•	 Please note: sending and receiving a message will be used again at a later time to
manage the end of the game (see “Game over,” following pages).

Activity 4: Repeat Activity 3 for the dune (10

minutes)

Now that the students have learned to manage one of the obstacles (lava), they must do the
same for the other one (dune).
This short exercise reinforces their understanding of what was done previously, namely sending
and receiving messages.

Conclusion and lesson recapitulation activity

The students update the list of Scratch instructions they know.

281

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 7
 -

 E
n

d
in

g
 t

h
e

 g
a

m
e

:
"G

a
m

e
 o

v
e

r"
L

e
v

e
l

3
 -

 S
e

q
.2

Step 7 - Ending the game: “Game
over”

Summary Students complete their program by introducing a test on the number
of remaining lives: the message «game over» appears and the program
stops when no more lives remain.

Key ideas

 (see Conceptual scenario, page 204)
Same as previous sessions

Equipment For each student pair
•	 A computer with Scratch and the program saved from the

previous lesson

The students must now make the game stop when there are no more lives. This requires several
things:

•	 Make “game over” appear
•	 Make it so the game can no longer be played (unless it is relaunched)

Activity 1: Make “game over” appear when

there are no more lives (15 minutes)

There are several ways to make “game over” appear. The easiest way is to import a sprite that
takes the appearance of “game over” (sprite provided). This sprite appears when the number
of lives reaches zero.
This is very easy to do using the instruction “Show” in the “Looks” category. Note that you must
remember to hide the “game over” sprite when the program is launched!
The program for this “game over” sprite is:

 “Game over” sprite program
Teaching notes

•	 It is also possible to import a “text” sprite from the Scratch library. This sprite is called
“awesome!”. By clicking on the “Costumes” tab, you can change the color and font as
well as edit the text.

282 Pedagogical Module

Activity 2: Stopping the game when “game

over” appears (15 minutes)

As the program stands now, users can continue playing even when “game over” appears, which
is not the desired outcome. To end the game, there are several strategies:

•	 Method 1

Trigger the end of all programs when the number of lives reaches zero. This is done
using the “Stop all” command from the “Control” category.

 Rover program

In theory, this should stop the game. However, in practice, a bug in Scratch (not yet fixed
at time of printing) means that despite using “Stop all,” certain programs will continue
to run (it is still possible to move the rover). As a result (and because it is visually more
appealing), we prefer the second method described below.

•	 Method 2

Make all the other sprites disappear when the number of lives reaches zero. With this
solution, only the “game over” sprite remains on the screen, so the game is truly over.
This method involves having one of the programs (e.g., the rover) send a message. This
message is called simply “game over.”
All the sprites (except the “game over” sprite) are hidden when they receive this
message. Because they are told to hide at the end, you must remember to ask them to
appear again when the program is launched.

283

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 7
 -

 E
n

d
in

g
 t

h
e

 g
a

m
e

:
"G

a
m

e
 o

v
e

r"
L

e
v

e
l

3
 -

 S
e

q
.2

The final instruction of the rover program (hide when «game over» is received) is also in the other sprites’
programs (except the «game over» sprite, which appears at that moment).

Teaching notes

•	 A simplified variation of Method 2 is available if you do not want to send or receive
messages. This variation consists in asking each sprite to hide when the number of lives
reaches zero.

The one-second pause ensures that the “lives” variable in the rover program had the
time to be initialized at 3. Otherwise, since its value is 0 when the program launches,
the sprites will hide immediately.

•	 Introducing a pause, even for a fraction of a second, is a workaround for the small
bugs linked to the syncing of different programs. Scratch gives the illusion of running
all programs simultaneously, but in fact, it runs them one after another (very quickly,
which is why it appears to be simultaneous). Introducing a pause to send/receive a
message is a way to force a program to run before another.

Conclusion and lesson recapitulation activity

The students update the list of Scratch instructions they know.

Rover program «Game over» sprite program

284 Pedagogical Module

Step 8 - Adding challenges

Summary Students finalize their video game by adding additional challenges:
a time limit, a tornado that goes faster and faster and moves around
randomly, etc. The concepts seen during the previous lessons – tests,
loops, variables and events – are all reviewed.

Key ideas

 (see Conceptual scenario, page 204)

Same as previous sessions, plus:
 “Algorithms”

•	 Certain loops, called «conditional loops,» are repeated until a
condition is met.

Equipment Same as previous sessions

Starting the activity

The students will likely have noticed that their game can be played but that it is not very
interesting because there are no major difficulties. If you pay attention to the obstacles, the
game can go on forever.

The class thinks together about a way to end the game and make it harder. There are several
options:

•	 Option 1: Add a time limit. When the time is up, the game stops. The player’s score
is based on the number of lives they still have and the number of resources gathered.

•	 Option 2: Add a new element to make the game increasingly difficult and eventually
end the game. For example, you can introduce a new trap (a tornado, similar to the
weather problems in Lesson 3, page 219 and Lesson 4, page 225, on binary coding).
The tornado moves faster and faster and its direction is unpredictable. Eventually, it
becomes too fast for the player to avoid and the game will end.

Teaching notes

•	 It is quite possible that the students will think of other ways to end the game. We
suggest the teacher to encourage a class discussion to choose one or more options for
the students to use (groups can choose the same option if they like).

•	 The teacher makes sure that students have an idea before getting started. If one option
is appealing but unrealistic, it’s best to choose another that is more feasible.

Below, we describe the two options above, as well as several others that do not necessarily make
the game more difficult but do make the game more visually appealing or avoid certain bugs.
The tasks below are of varying difficulty, and can be used independently of each other.

We suggest doing at least Activity 2 or 3 to make the game more interesting.

285

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 8
 -

 A
d

d
in

g
 c

h
a

ll
e

n
g

e
s

L
e

v
e

l
3

 -
 S

e
q

.2

Activity 1: Make a countdown appear when the game

starts (15 minutes)

You can decide that the game only starts after a countdown: 5, 4, 3, 2, 1, go! This can be done
very easily, like this:

Or in a more sophisticated way by using a new variable and a loop:

Depending on students’ levels, you can have them use the “easy” method or ask them to use a
variable and a loop. For the more complicated version, you can also give them all of the elements
but out of order and not linked and ask them to put everything in order for the program to get
the same result as the first option.

Activity 2: Limiting the game duration

(15 minutes)
Teaching notes

•	 This task is similar to the first, described above, but you must use the more complicated
variation (variable and loop) because it is not feasible to write out a countdown by hand,
second by second, that will last several minutes.

•	 If the students have already created a countdown (Activity 1), this task will be easy for
them. If not, they will need a little more time and may need some guidance.

•	 This task reviews the ideas of variables, tests, loops and logical operators.

Limiting the game time is an easy way to make it more interesting. A “time limit” variable must
be created, given an initial value and decreased as time goes on by introducing a timeout period
to control the speed of the process.
The program stops (“game over” message) when the time limit reaches 0 or when the number
of lives reaches 0.

286 Pedagogical Module

The rover program must be modified to include:

In this example, set the “countdown” to 20 and remove 1 every second.
These values can be changed for a shorter or longer time limit.

Activity 3: Add a tornado that moves around

randomly (15 minutes)

Students already know how to create a sprite from an image and initialize its position. They
can, for example, have a tornado start from the lower left corner (X = -230 and Y = -170).
They must then figure out how to make it move around randomly. For the movement to be
instantaneous, change the X and Y values. However, it is better to see the tornado move around.
The command to do this is “Glide...secs to x=… and y=…” from the “Motion” block category.
For the tornado to move to any position on the map, simply write the following instruction:

By clicking several times on this instruction, the students can confirm that the tornado moves
randomly each time. The movement is always one second, so if the point of arrival is close, it
moves very slowly, and if it is farther away, it moves faster.
Now, this instruction needs to be connected to the rest of the tornado program (we have
changed the time to “2 seconds” to slow the tornado down).

287

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 8
 -

 A
d

d
in

g
 c

h
a

ll
e

n
g

e
s

L
e

v
e

l
3

 -
 S

e
q

.2

You must remember that if the rover touches the tornado, the game is over. The following
instruction is added to the tornado program:

Activity 4: Make the tornado bigger

(15 minutes)

To make the game even harder, you can make the tornado get bigger as resources are gathered.
At this point in the project, this task should not be too difficult.

•	 In the resource programs (ice and plants), send a message each time a resource is
gathered.

•	 In the tornado program, make it bigger each time the message “resource gathered” is
received. To do this, use the command “Change size by...” from the “Looks” category.

•	 Because the tornado’s size is modified in the program, the size must be initialized at the
start of the program using the command “Resize to 100%” from the “Looks” category.

Activity 5: Making the tornado go faster and

faster (20 minutes)

This task, which is very difficult, is intended for older students (middle school). However, some
older elementary school students may need a challenge. This should do the trick!

288 Pedagogical Module

The aim is to make the tornado go faster each time a resource is gathered (ice or plant). To
make the tornado go faster, a variable – “speed_tornado” – must be created (initialized at 1, in
the same program as for the other variables) and to increase it, such as by 10% at each event
(hint: increasing the speed by 10% equates to multiplying by 1.1).

The tornado program is modified as follows:

Note that the value of “speed_tornado” must be taken into account in the program that
commands its movement (“Glide” instruction). This can be done by including “speed_tornado”
in the glide time calculation as follows:

The greater the “speed_tornado”, the faster the movement is: the tornado gets faster and
faster, which is the result we want.

Activity 6: Simulate a torus world (joining the

edges of the backdrop) (20 minutes)

The game will be more fun if the rover is not blocked by the edges of the backdrop. When it
reaches the right edge, it needs to continue along its path and reappear on the left side, and
vice versa. It should do the same for the top and bottom edges.

Scientific notes

•	 A flat surface that is folded so that the left and right edges meet is called a cylinder. If a
second fold is added to join the top and the bottom edges, this is called a torus cylinder.
It resembles a doughnut.

•	 Many video games are based on a torus world, even if it does not actually resemble a real
planet (on Earth, when you reach the North Pole, you do not switch to the South Pole!).

The teacher lets the students work on their own and guides them if they encounter difficulties,
first explaining the algorithm to use: if position X of the rover goes past 240 (far right edge),
then it must go to -240 (far left edge). Next, the teacher can show the different blocks required
to build the program: a “repeat forever” loop, a, “if…then” control structure, a “higher than”

289

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 8
 -

 A
d

d
in

g
 c

h
a

ll
e

n
g

e
s

L
e

v
e

l
3

 -
 S

e
q

.2

operator, the value for variable X (blue “Position X” block), and the instruction to be able to
change this value “blue “Set X to …”). The blocks connect together as follows:

Teaching notes

•	 Depending on the shape of the sprites, it may be necessary to leave a small margin
(instead of setting the edge value at 240, set it at 235).

Once the students have understood how to program the transition from the right to left edges,
it is easy to program the transition from left to right and then vertically (Y variable) top to
bottom and bottom to top.

The rover script that creates a torus world is:

Teaching notes

•	 The screenshot above shows that it is possible to add comments to a program. It is
good to get into the habit of doing this to make the program clearer for both you and
those who will be reading it.

•	 At this point, the instruction “bounce back if the edge is touched” needs to be deleted
in the scripts that pilot the rover using arrows.

290 Pedagogical Module

Activity 7: Preventing resources and traps

from overlapping (20 minutes)

Like for Activity 5 above, this task is aimed at middle school students or older elementary school
students who are ahead of the rest of the class.
When resources (ice, plants) are gathered, they reappear randomly on the stage. It is quite
possible that a resource will appear where there is already a trap (dune or lava). This situation
must be avoided, as you cannot have two contradictory goals: gathering the resource and
avoiding the obstacle.
What do you do to ensure this does not happen? A new position must be chosen randomly
as long as the resource is touching a trap. However, because the resource was not initially in
contact with a trap, the loop will not run. The trick is to introduce a preliminary step to force
the loop to run a first time. The algorithm is:

1. Place the resource anywhere by randomly selecting its coordinates (or, if you prefer,
place it on a trap).

2. Then, create the following loop: Until the resource is in position free of any traps, it
assigns a new random position.

The students will need to be guided, either by telling them the trick above (after letting them
explore on their own) or by giving them the final program and asking them to analyze it to
understand what it does and why.

The final program for the ice or plants is:

291

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 8
 -

 A
d

d
in

g
 c

h
a

ll
e

n
g

e
s

L
e

v
e

l
3

 -
 S

e
q

.2

Conclusion and lesson recapitulation activity

The video game is now interesting enough for students to play it and give each other challenges.
The students update the list of Scratch instructions they know.
The teacher reviews with the class what they learned during this project, the difficulties they
encountered, what they enjoyed (some will likely have already started creating other Scratch

programs at home), etc.

Teaching notes

•	 This programming activity was probably new to most students. To make sure they do
not forget how to use Scratch and to encourage their creativity, we suggest having them
create a personal project later in the year. This can be a video game (a fairly complex
project, as we saw), an animated card (for Halloween, Christmas, etc.) or interactive
surveys. There are many possibilities.

•	 The aim of the next step is to explore some of the additional functionalities in Scratch

to give you an idea of other possible activities.

292 Pedagogical Module

Step 9 - Further study in Scratch

Summary Here are several ideas to explore other functionalities in Scratch, such
as giving students extra options for their personal projects.

Key ideas

 (see Conceptual scenario, page 204)

 Same as previous sessions

Equipment For each student pair
•	 A computer with Scratch and the program saved from the

previous lesson
Duration 1 to 4 lessons

Foreword

During the previous lessons, students learned about the basic functionalities and concepts of
Scratch:

•	 Sprites
•	 Stages
•	 Instruction blocks
•	 Motion
•	 Looks
•	 Events
•	 Loop
•	 Tests
•	 Variables
•	 Calculations and logical operators
•	 Sensors

However, there are many functionalities that were not covered. Many are very simple and can
enhance students’ programs they do on their own: games, animated cards, interactive surveys,
drawings, etc. We have provided a list below.

Costumes

Each sprite can have several “costumes” that correspond to its physical appearance. A new
costume can be a slight variation of the previous costume (a different arm or leg position, etc.)
or very different than other costumes.
To create a new costume, select the sprite you want to change and click the “Costumes”
category. This new costume can be based on the old costume, an imported image or a drawing
created by the user.

293

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

te
p

 8
 -

 F
u

rt
h

e
r

s
tu

d
y

 i
n

 S
c

ra
tc

h
L

e
v

e
l

3
 -

 S
e

q
.2

Here, the cat (default sprite in Scratch) has two costumes. You can change the costume while
making it move forward, which makes it look like it is walking.

The two instructions to change costumes are available in the “Looks” category:

For the previous sequence, for example, you can ask the students to create a new costume for
the rover to make it look “burned” or “broken” to be activated when the rover hits an obstacle.

Pen

Each sprite has a “pen” that leaves a line on the ground (the screen)
when lowered. The pen’s default position is raised and does not leave
a line.

The instructions available from the green “Pen” category let you raise
or lower the pen, change the thickness of the shade, thickness, color,
etc. of the line.

This functionality means you can create such things as geometric
shapes in Scratch.

Speech and questions/answers

Each sprite can display text on the screen (“Say” instruction in the “Looks” category). It can
also interact with the user by asking questions (“Ask” instruction in the “Sensing” category).
It waits for the user’s response typed with the keyboard and saves it in a predefined variable
called “answer.” The answer, like any variable, can be manipulated by the program.
This small program, for example, greets the user by using their first name:

294 Pedagogical Module

This one asks a question and congratulates the user if the answer is correct.

It is possible (and quite interesting) to use Scratch to ask the students to program quizzes or
tests in different subjects.

Other ideas

Scratch offers even more possibilities and functionalities, but they may be too complex for
elementary school students. For example:

•	 Clones, which can be used to duplicate a sprite in as many copies as desired, each
considered to be the same sprite as the original (they obey the same programs). For the
project in this sequence, you might, for example, want to display a random number of
plants and place them randomly around the stage. The clones are found in the “Control”
category.

•	 Custom blocks, which let the user create their own new instruction blocks. This can be
very useful if you frequently re-use the same set of instructions. Rather than repeating
them, grouping them in a custom block saves time, lightens the code and reduces errors.
Custom blocks are available from the indigo menu “More blocks” (create a new block).

•	 Sounds: Using sounds can be very easy (each sprite can play a pre-recorded sound or
a note with the pitch and volume adjusted), but it can quickly become cumbersome in
a classroom setting.

295

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
S

e
q

u
e

n
c

e
 l

ll
 -

 S
e

n
d

in
g

 n
e

w
s

L
e

v
e

l
3

 -
 S

e
q

.3

 Sequence 3: Sending News

Lesson Title Page Summary

Lesson 1 How to send an image

296

Students must figure out how to transfer an image
remotely. To do this, they learn that an image can
be represented by a pixel grid. They learn about the
notion of resolution as they see that the more pixels
an image has, the clearer it becomes, but also the
slower it is to transfer.

Lesson 2 How to code a black
and white image

304

Students apply what they learned from the previous
lesson to coding black and white digital images. They
first view a single file in a text editor and an image
editor to understand how the information is coded.
They then code a small checkerboard themselves.

Lesson 3 (Optional) How to code
a grayscale or color
image

309
Students take what they learned in the previous
lesson further by learning how to code a gray and
color digital image.

Lesson 4 How to ensure a
message is secure 316

To protect their messages, students learn about
encryption using a simple algorithm (called Caesar’s
cipher), which involves shifting the letters of a
message.

Lesson 5 (Optional) How to
make sure our data are
successfully sent 324

Students learn that it is possible to detect and correct
errors introduced when storing or transferring a file
by adding the right information. This lets them do a
sort of «magic trick».

296 Pedagogical Module

Lesson 1 - How to send an image

Summary Students figure out how to send an image remotely. To do this, they
learn that an image can be represented by a pixel grid. The learn about
the notion of resolution as they see that the more pixels an image has,
the clearer it becomes, but also the slower it is to send.

Key ideas
 (see Conceptual scenario, page 204)

“Information”
•	 An image can be represented by a grid of squares called pixels.

Inquiry-based methods Observation, experimentation

Equipment For the class
•	 Magnets or blu-tack to attach finished work to the

whiteboard.
For each group (four groups, A, B, C and D)

•	 Handheld magnifying glass or microscope
•	 Newspapers

•	 Use large posters if there are no magnifying glasses or
microscopes available

•	 Photocopy of Image A, Handout 39 (page 302), for each
student in Group A, Image B for Group B, etc.

•	 Handout 40 (page 303) printed or photocopied on a slide or
tracing paper and cut into 3 grids. Make sure there are extra
grids.

For each student
•	 Tracing paper (1/4 of an A4 page) and sharpened pencil, or

slide and fine-tipped permanent marker
•	 Sticky tape or paper clips

Glossary Image, pixel, resolution
Duration 1 hour 30 minutes

Decluttering situation

Introductory question The teacher explains that explorers want to photograph their discoveries,
and send the photos to their base. “How can they send their photographs across long distances?”
Students make suggestions: by courier, carrier pigeon, Facebook, scan or e-mail.
Even if students do not think of digitizing the photograph, the teacher then asks this question:
“But what is an image?”

Research work: Defining an image (in groups)

The teacher hands out newspapers to each group. They ask the students to think about what
an image is made of. The students mention materials: paper, cardboard and ink. When this
work is mentioned, the teacher hands out the magnifying glasses or microscopes. “Can you
describe how the ink looks in these pictures? What color is it?”

297

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 H

o
w

 t
o

 s
e

n
d

 a
n

 i
m

a
g

e
L

e
v

e
l

3
 -

 S
e

q
.3

Very quickly the students will see that newspaper print is made up of thousands of tiny dots,
and that the colors of these dots are in fact very limited. The teacher introduces the word
‘pixel’ (“picture element”) and helps draw a conclusion such as the following: “A photograph
is made up of tiny colored dots, called pixels. From a distance, we can not see the pixels, but
an image that appears continuous”.

Studying magazines through a microscope. Handheld magnifying
glasses can be used if the print chosen is of basic quality, such as
newspaper. 6th grade class in Paris

 Teaching notes

•	 Depending on the quality of the microscopes and the print (laser versus inkjet, for
example), the pixel overlap may make it hard to see them in magazines and photographs.
This is why we recommend using newspaper. However, you can test the microscopes
before the lesson to see if the pixels can be seen on a material other than newspaper.

•	 If there are no magnifying glasses available, pixels are visible to the naked eye on large-
format advertisement posters. Pixels are not visible the further we are away from them.

•	 During the following lesson, we will look at the pixels again, but on a computer screen,
to conclude that images are made up of tiny, discontinuous spots of various shades
(see scientific note below).

Scientific notes

•	 For technical reasons, pixels on screens are rows of tiny squares (to be more precise, on
color screens each square pixel is in fact made up of three rectangular sub-pixels: red,
green and blue, from left to right. See below). On paper, the colored dots may overlap
(the white in the paper is also used in reproducing colors).

•	 The pixel colors depend greatly on the device used. On a computer, tablet or smartphone
screen, pixels exist in Red, Green and Blue. This is known as RGB printing. For images
printed in four colors, these are Cyan, Magenta, Yellow and Black. This is known as
CMYB printing. Two-color printing simply requires two complementary ink colors (blue
and orange, for example). The combination of these few colors enables a wide variety
of colorful creations to be reproduced.

298 Pedagogical Module

Exercise (in pairs): How many pixels are needed for our

image?

The teacher puts the conclusion into context: “To send an image, you need to send all the
pixels, one by one.” The teacher suggests an exercise that enables the students to fully grasp
this key idea and go further into depth by pixelating an image, i.e. replace it with a pixel grid.
The teacher divides the class into four groups, and each group pixelates one of the four images
(A, B, C, or D) on Handout 39.

- A copy of the image for their group. Do not forget to remind them that the other groups
cannot know which image they have.

- Grid 1 on Handout 40 printed on a slide or tracing paper.
- Plain tracing paper (a quarter of an A4 page) with a pencil or slides (a quarter of an A4

slide) and fine-tipped permanent markers (in this example, we used tracing paper);
- Sticky tape or paper clips.

The students must place the grid over the image, ensuring the image corners are aligned within
the crop marks. They place the tracing paper on top, attach the 3 papers with sticky tape or
paper clips, and color in (on the tracing paper) the boxes that the image outline crosses.

Sixth grade class in Paris

When they have finished, they write the image letter (A, B, C or D) and the number of the grid
(1, in this instance) on their Handout. Each group hands the teacher one or two copies of the
pixelated image with 64 pixels, choosing the darkest pencil-colored boxes. The teacher displays
the group work in 4 columns (“Image A”, “Image B”, etc.) allowing room for 3 subsequent lines
(which will be named “Grid 1”, “Grid 2”, and “Grid 3”). The images pixelated with Grid 1 are
unidentifiable.

299

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 H

o
w

 t
o

 s
e

n
d

 a
n

 i
m

a
g

e
L

e
v

e
l

3
 -

 S
e

q
.3

Image A pixelated with Grid 1. Anne-
Marie Lebrun’s fourth grade class
(Bourg-la-Reine)

“How can we make these images clearer so that we can recognize the picture?” The students
will come up with two ideas: either by using different shades of gray, instead of just black and
white, or by adding more pixels. The first option — if it is suggested spontaneously — should be
written on the whiteboard, and studied in further detail at a later stage (Lesson 3.3, page 309).
To explore the second suggestion, the teacher hands out the finer grids in Handout 40

A student works on pixelating Image
B with Grid 2. Anne-Marie Lebrun’s
fourth grade class (Bourg-la-Reine)

Teaching notes

•	 Hand out Grids 2 and 3 depending on the speed at which students in the same group
work, in order to avoid lengthening the lesson time. Each student should complete the
exercise at least once.

•	 An alternative method would be to hand out Grids 1, 2 and 3 to the groups from the
start, rather than having the whole class use Grid 1. This saves 15 minutes, but the
discussion on how to improve the first result will not be possible.

•	 Expect to repeat the instructions “color in the boxes fully or leave them blank” and
“color in the boxes fully where the image outline passes through” several times. Do not
hesitate to show the students how this should be done, using the whiteboard.

300 Pedagogical Module

The teacher asks the pairs using Grid 2 to show their result beneath the previous images of their
group. If the students from the other three groups appear to identify the picture, the teacher
adds a sub-heading with their guess (apple? peach? pear?). Then they ask the pairs using Grid
3 and write down the new guesses.

From left to right, Image D pixelated with Grids 1, 2 and 3. Right: image pixelated with a 64x64=4,096-pixel grid
(too long to use in the classroom).

Group discussion

The teacher asks the students if adding more pixels is an effective solution to the issue
encountered (i.e. how to render the image intelligible despite the pixelation). The term
“resolution” is introduced. “When we increase the number of pixels, the image resolution is
higher, and it is easier to see what the picture is.”
By comparing pixelated images with varying resolutions, the resolution requirement can be
explained. Certain images were identifiable when using Grid 2, whereas for others Grid 3 was
needed. The teacher must remind the class that all pixels must be sent one by one to the
base before the image can be reproduced. They highlight the necessary compromise between
resolution and ease of transfer: “If we had limited means, what resolution would be sufficient?”
For each pixelated image, the class discusses and chooses a compromise resolution. For example,
the lowest-quality resolution which renders at least three of the four images identifiable, or
the resolution which at least shows the difference between the four images.

Images A, B, C and D pixelated using grids 1, 2 and 3. Anne-Marie Lebrun’s fourth grade class (Bourg-la-Reine)

301

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 H

o
w

 t
o

 s
e

n
d

 a
n

 i
m

a
g

e
L

e
v

e
l

3
 -

 S
e

q
.3

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 An image is made up of pixels.
•	 To send an image, you need to send all of its pixels one by one.
•	 The more pixels we use, the closer the pixelated image will be to the original, but it takes

up more memory and takes longer to send.

Students write down these conclusions in their science notebook. The teacher updates the
“Information” section of the poster entitled “What is computer science?”

Further study
•	 Pixelated images can be used for artistic applications. For example, Post-it art (see

examples here: http://www.postitwar.com) can be used to create posters or decorate
walls with Post-its© that act as pixels. This could be a good opportunity to talk about
art history, and pointillism in painting. See also the activity suggested in Level 2: Lesson
1.4 (page 123) and Handout 18 (Page 128).

•	 This work can extend to include photomosaics. In photomosaics, the pixel is made
of an image. Looking closer, you can see the details of a myriad of miniature photos,
whereas from a distance an entirely different image is seen. For example, miniature
photos may be pictures of the students, and the overall image could be a panoramic
image of the school, or a mythical creature or landscape, etc. Free software, such as
AndreaMosaic (http://www.andreaplanet.com/andreamosaic) offers the possibility of
creating photomosaics.

302 Pedagogical Module

Image A

Instruction: Copy this image onto tracing
paper using the grid your teacher gives you.
Color in the boxes if there is black in them.

Image B

Instruction: Copy this image onto tracing
paper using the grid your teacher gives you.
Color in the boxes if there is black in them.

Image C

Instruction: Copy this image onto tracing
paper using the grid your teacher gives you.
Color in the boxes if there is black in them.

Image D

Instruction: Copy this image onto tracing
paper using the grid your teacher gives you.
Color in the boxes if there is black in them.

HANDOUT 39

Images for sending

303

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 1

 -
 H

o
w

 t
o

 s
e

n
d

 a
n

 i
m

a
g

e
L

e
v

e
l

3
 -

 S
e

q
.3

HANDOUT 40

Grids of varying density

Grid 2

Grid 3

Grid 1

304 Pedagogical Module

Lesson 2 - How to code a black
and white image

Summary Students apply what they learned in the previous lesson by coding black
and white images. They first view a single file in a text editor and an image
editor to understand how the information is coded. They then code a
small checkerboard themselves.

Key ideas

 (see Conceptual scenario, page 204)

“Information”
•	 An image can be represented by a grid of squares called pixels.
•	 A computer represents all information using a code with only two

symbols, 0 and 1, called bits: this is binary code.
•	 In black and white, each pixel can be represented by a single bit.

Inquiry-based methods Observation, experimentation

Equipment For each pair
•	 Computer with basic text editing program (Notepad, for example)

and a basic image editing program and file accessible to students
containing the files 3-3.2_research_BnW and 3-3.2_challenge_
BnW_blank.

•	 Magnifying glass/microscope
•	 Video projector

For the class
•	 Handout 41, page 308, projected on the whiteboard

Glossary Image, pixel, coding
Duration 1 hour

Teaching notes

•	 It is highly recommended to use the image editor XnView in its minimal version,
because of the following advantages:
- It is free for educational use;
- It correctly reads files in PBM format (and PGM and PPM for Lesson 3-3.3);
- It has a simple interface;
- Zoom function possible without entering text, using magnifiers “+” and “-”;
- An open image can be refreshed (“Reopen” in the “File” menu or use keyboard

shortcut “Ctrl + R”), which facilitates students’ trial and error.
•	 XnView can be downloaded here: http://www.xnview.com/en/xnview

Decluttering situation

Introductory question The students pay attention to the board, where the teacher shows them
the picture of the apple they pixelated to 256 pixels (Grid 2) in the previous lesson (Handout
39, page 302, Image A): “Our explorers want to send this image to the base, without travelling
there. How can they do it?”
In the ensuing discussion, the class suggests several methods and various concepts. The teacher
writes the different ideas on the board. In particular, several suggestions should be explored

305

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 2

 -
 H

o
w

 t
o

 c
o

d
e

 a
 b

la
c

k
 a

n
d

 w
h

it
e

..
.

L
e

v
e

l
3

 -
 S

e
q

.3

further, such as “there are white pixels and black pixels”, or “each pixel can be described in
Morse code with a flashlight”.
The suggestions are an opportunity to remind students of the key idea of binary code (0 for
black pixels, 1 for white pixels) if this key idea was addressed in Lesson 1 (page 219). “Imagine
if the explorers could not send a simple text message (SMS) to describe this image.” Little by
little, the students evoke the possibility of a text composed of 0s and 1s being enough to define
the image.

Observation: Understanding how a black and white

image is encoded (first as a class, then in pairs)

In order to check if a text written with 0s and 1s is enough to represent a pixelated black and
white image, the teacher shows the students how to open the text file 3-3.2_research_BnW.
pbm with a basic text editor (Notepad in Windows, for example). The file contains the following:

P 1
1 6 1 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The teacher explains that this file is a digital version of the image of the pixelated apple in
16x16 pixels. They ask the class if the grid of 0s and 1s appears to correctly illustrate the apple.
It does, as we can see some of the leaf and the outline, visible in the 1s. If the students appear
uncertain, the teacher can automatically replace all the zeros with periods (.) in Notepad using
Ctrl + H. The apple can then be seen very clearly (this can be quickly undone with the command
“Ctrl + Z”).
The teacher asks if there is anything else in the file aside from the grid of 0s and 1s. Students
study the first two lines of the file and may suggest that 16 and 16 corresponds to the pixel grid’s
dimensions. The teacher explains that these first lines define the format of the data written to

306 Pedagogical Module

this file: “P1” indicates binary code (0s and 1s only) and the
“16 16” line tells us that a table of 16 columns and 16 lines of
data will follow. There are 16x16=256 bits (0s and 1s) in the
file (description of the actual pixel grid).
The teacher then shows the class how to view this file with
an image editor rather than a text editor, such as XnView
(see teaching note at the beginning of the lesson). The apple
appears very small. To see it properly, you need to zoom in
completely. The class notices, by comparing the grid of 0s
and 1s and the image of the apple, that the black pixels are
encoded with a 1 and the white pixels with a 0.
They immediately practice what the teacher has shown them:
they open a file using both a text editor and an image editor (see upper section of Handout
41). They look at the miniature apple using a magnifying glass on the screen before zooming
in, then zoom in as much as necessary.
A group summary is written about the file format: P1 on the first line, the number of columns
and the number of lines on the second, then a grid of 1s (for black) and 0s (for white) of suitable
size on the following lines.

Scientific notes

•	 The PBM extension on the file means “portable bit map”.
•	 If, in the pixel grid, there are values other than 0 and 1, they are interpreted modulo

2: 0 produces white, 1 produces black, 2 (and all even values) produces white again,
3 (and all uneven values) produces black, etc.

Challenge in pairs: Digitally encoding a checkered grid

The teacher gives the class a challenge: they must use the text editor to create
a file representing a small, black and white checkered grid with 5 lines and 5
columns, with black squares in each corner. The file, which is empty for now, is
called 3-3.2_challenge_BnW_blank.pbm.
Then they save the file and open it with the image editor, without closing the
text editor, and call the teacher once they have the file opened side by side in
both programs, with the checkered grid visible in the image editor.

The students should suggest the following code:

P 1

5 5

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

307

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 2

 -
 H

o
w

 t
o

 c
o

d
e

 a
 b

la
c

k
 a

n
d

 w
h

it
e

..
.

L
e

v
e

l
3

 -
 S

e
q

.3

Conclusion and lesson recapitulation activity

The class summarizes together what they’ve learnt in this lesson:
•	 The pixels of an image can be represented by numbers.
•	 Each pixel in a black and white image is represented by either a 0 (white pixel) or a 1

(black pixel).
•	 To send a black and white image, we have to encode it and send the coded version,

which is decoded upon receiving to reproduce the image.

Students write down these conclusions in their science notebook. The teacher updates the
“Information” section of the poster entitled “Defining computer science”.

308 Pedagogical Module

Research: Understanding how a black and white image is encoded

The same file, named 3-3.2_research_BnW, is opened on the left using a text editor and on the
right using an image editor:

Instructions: Explain what conclusion you can come to on how to encode a black and white
image.

Challenge

Encode the small checkered grid in file 3-3.2_challenge_BnW_blank.pbm
and view it on the screen.

Research: Understanding how a black and white image is encoded

The same file, named 3-3.2_research_BnW, is opened on the left using a text editor and on the
right using an image editor:

Instructions: Explain what conclusion you can come to on how to encode a black and white
image.
Challenge

Encode the small checkered grid in file 3-3.2_challenge_BnW_blank.pbm
and view it on the screen.

HANDOUT 41

How to code a black and white image

309

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 H

o
w

 t
o

 c
o

d
e

 a
 g

ra
y

s
c

a
le

 o
r

c
o

lo
r.

..
L

e
v

e
l

3
 -

 S
e

q
.3

Lesson 3 - (Optional) How to
code a grayscale or color image

Summary Students take what they learned in the previous lesson further by
learning how to code gray and color digital images.

Key ideas

 (see Conceptual scenario, page 204)

“Information”
•	 An image can be represented by a grid of squares called pixels.
•	 The more bits are combined, the greater the variety of elements

can be represented.
•	 In grayscale, every pixel can be represented by several bits.
•	 In color, every pixel can be represented by 3 numbers (in one or

several bits) that represent a quantity of red, green and blue.

Inquiry-based methods Observation, experimentation

Equipment For each pair
•	 Computer with basic text editing program (Notepad, for exam-

ple) and a basic image editing program (XnView, for example)
•	 Folder that can be accessed by students, containing files 3-3.3_

research_grayscale, 3-3.3_challenge_grayscale_blank, 3-3.3_
research_color and 3-3.3_challenge_color_prefilled.

•	 Hand-held magnifying glass

For the class
•	 Video projector
•	 Handouts 42 (page 314) and 43 (page 315) projected on the

whiteboard
Glossary Image, pixel, coding
Duration 1 hour 30 minutes, which can be divided into two 45-minute lessons

Introductory question The teacher returns to the conclusions of the previous lesson: a black
and white image can be coded with a pixel grid, by indicating 0 for a white pixel and 1 for a
black pixel.
If the students suggested during Lesson 3-3.1 to improve the reproduction of the images of the
fruits by coloring in the boxes in lighter or darker shades, the teacher picks up this suggestion,
noted on the whiteboard: “When we pixelated the images of the fruits, you suggested not only
coloring in the boxes in black or leaving them white, but also coloring in some boxes in gray.”
Whether or not the suggestion was made by the students, the teacher then opens a grayscale
image using the image editor (file 3-3.3_research_grayscale) and zooms in sufficiently so that
the pixels are visible. The teacher asks the class if this image has only black or white pixels. The
students remark that there are light, medium and dark gray pixels, as well as black and white
pixels, which brings them to the first research activity.

310 Pedagogical Module

Research (in pairs and as a class): Encoding an image in

grayscale

The teacher asks if 0s and 1s will be enough to encode the black, white and various shades of
gray pixels. The students answer “no”, and suggest adding in other numbers aside from 0 and
1. The teacher asks the students to try and figure out how this image was encoded (they have
access to the file 3-3.3_research_grayscale and can open it with the program of their choice).
If they have difficulty, the teacher can suggest opening the file using both the text editor and
image editor programs (see upper section of Handout 42).

In a few minutes, the class report back together. They will have noticed, by comparing the file
opened with the text editor and with the image editor, that:

- P2 is indicated on the first line, and not P1 (the teacher explains that this means that
what follows will be encoded in shades of gray).

- On the second line, there is an indication of the number of lines and the number of
columns (here 15 15), as was the case for the coding of black and white images.

- There is an extra line where the figure 7 is indicated, the highest figure that appears in
the pixel grid that follows.

- The pixel grid contains figures between 0 and 7, i.e. 8 different figures (and not just 0s
and 1s as was the case for the coding in black and white).

- The lower the figure, the darker the corresponding pixel (black pixels encoded by 0,
increasingly lighter shades of gray pixels encoded with figures 1 through 6, and white
pixels encoded by 7). The opposite was true for black and white coding (0 corresponded
to white pixels).

If only some or none of these observations were made in pairs, the teacher guides the class. If
questions remain, the teacher can encourage the students to make changes to the file in the text
editor, and refresh the image in the image editor (File/Reopen), to see what has been changed.

Scientific notes

•	 Grayscale images are usually coded with a number of shades corresponding to a power
of 2 (for example, 8, 16, 32 or 256 grayscale), which corresponds to a code for each pixel
in 3 bits, 4 bits, 5 bits and 8 bits, respectively) (see Lesson 1.3 page 219).

•	 The PGM extension of the image files means “portable grayscale map”.

Challenge (in pairs): Encoding a grayscale

 The teacher gives the class the following challenge: they must use the text editor to create a file
representing a grayscale, like the one projected on the board (point out the white pixel on the left if it
is not visible). The file, which is empty for now, is called 3-3.3_challenge_grayscale_blank.pbm.

Then the students save the file and open it with the image editor, without closing the text editor, and
call the teacher once they have the file opened side by side in both programs, with the grayscale visible
in the image editor.

311

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 H

o
w

 t
o

 c
o

d
e

 a
 g

ra
y

s
c

a
le

 o
r

c
o

lo
r.

..
L

e
v

e
l

3
 -

 S
e

q
.3

A possible code, that most pairs will suggest, is the following:
P2

16 1

15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

To achieve this result, the students will have counted the number of gray levels on the scale (16,
in this case) and adapted the third line accordingly. They must also have adapted the format of
the pixel grid (16 columns and a single line) and encoded the pixels with values in descending
order from 15 to 0, so that the white pixel appears on the left and the black pixel on the right,
to match the request of the challenge.

Here is another possible code (among many others):
P2
16 1

31

31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 0

Research (in pairs and as a class): Coding a color pixel

The teacher reminds the class that images can also be in color. They indicate the file 3-3.3_
research_color, which allows the class to code a single pixel in color. The teacher asks the
students to try and understand how coding works using this file, as they did for the grayscale
example. They suggest only touching the last line to begin, and to look at the result on the
screen with magnifying glasses (that they distribute).

The coding suggested in the file, which yields a red pixel, is the following:
P3
1 1

7

7 0 0

The students can try, for the third line, full colors 0 0 0 (black pixel), 7 7 7 (white pixel), 0 7 0
(green pixel), 0 0 7 (blue pixel), 0 7 7 (cyan pixel), 7 0 7 (magenta pixel), 7 7 0 (yellow pixel) and
several other intermediary combinations of their choice (for example, 7 6 2, which produces a
golden yellow or 1 5 6 which produces a sky blue).
During the group discussion, the students report that using the magnifying glass, they see little
red, green and blue lights, of rectangular shape, aligned repetitively in this order, from left to
right on the screen. When 0 0 0 is indicated on the last line of the file, the lights on the screen
(of all colors — red, green and blue) are not very bright under the magnifying glass, whereas
with 7 7 7, they are very bright. With 7 0 0, only the red lights are bright, etc. The class concludes
together that the three values of the last line indicate the level of brightness of the pixel in red,
green and blue (the square pixel has therefore 3 rectangular sub-pixels in three shades, R, G
and B). The impression we get at a distance from the screen depends on the balance between
the brightness in each shade. The color obtained for the following combinations is kept visible
on the board, in order to complete the following challenge:

312 Pedagogical Module

0 0 0 7 7 7 7 0 0 0 7 0 0 0 7 0 7 7 7 0 7 7 7 0
Black White Red Green Blue Cyan Magenta Yellow

The teacher can point out that, generally, there are 256 levels of red, green and blue possible,
and not just 8. They specify that for the next challenge, the class is going to reduce the levels
of red, green and blue, to have just two: switched off or switched on, just like for coding in
black and white.

Scientific notes

•	 The ppm file extension means “Portable Pixel Map”.
•	 Usually, the sub-pixels are encoded in 8 bits, which corresponds to 256 levels of possible

intensity (values fro 0 to 255). Therefore, 24 bits are required to describe a pixel in RGB
(see Lesson 1.3 page 219).

Challenge: Code a mini-lighthouse in color

The teacher gives the class a final challenge. They have to code a small lighthouse in color, using
only two levels of luminance for the sub-pixels: 0 for an “dark” sub-pixel and 1 for a “bright”
sub-pixel.

In other words, the file 3-3.3_challenge_color_prefilled to be modified begins with:
P3
5 5

1

Followed by a grid of 0 (off pixels) and 1 (on pixels) values. The file is pre-completed with
the correct number of 0s (15 per line, across 5 lines). A comment line beginning with the
hashtag (#) makes finding the blocks of three sub-pixels easier.

The students who complete the challenge correctly suggest the following code:

P3
5 5

1

0 1 1 0 1 1 1 0 0 1 1 0 1 1 0

0 1 1 0 1 1 1 1 1 0 1 1 0 1 1

0 1 1 0 0 0 0 0 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

This time, there is only one possibility, as the 1-bit code (0 or 1 for each sub-pixel) is obligatory
in the challenge.

313

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 H

o
w

 t
o

 c
o

d
e

 a
 g

ra
y

s
c

a
le

 o
r

c
o

lo
r.

..
L

e
v

e
l

3
 -

 S
e

q
.3

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 The pixels of an image can be represented by numbers.
•	 Each pixel of a grayscale image is represented by a number. If the image has 8 shades

of gray, this number is included between 0 (black pixel) and 7 (white pixel).
•	 Each pixel of a color image is represented by 3 numbers which indicate the intensity of

red, green and blue of this pixel.
•	 To send a grayscale or color image, we have to encode it and send the coded version,

which is decoded upon receiving to reproduce the image.

Students write down these conclusions in their science notebook. The teacher updates the
“Information” section of the poster entitled “Defining computer science”

Further study

The students can practice by taking well-known images (Mario©, Tintin©’s rocket, the sword in
Minecraft©, etc.) and, to begin, pixelate them with grids like those used in Lesson 3-3.1 (16x16
grid for example) and then encode the images in a PBM, PGM or PPM file in order to make
them visible on a screen.
In science and art, we can also study this topic further by recomposing colors in red-green-blue
triplets.

Scientific notes

•	 Additive color (sometimes called “light color” at school) means adding streams of light
colors together in order to recreate all the colors of the visible spectrum. Inversely,
subtractive color (sometimes called “material color” at school) combines colored
pigments which, when brought together, absorb certain colors of the surrounding light
and reflect others.

•	 By using three pocket torches covered with red, blue and green colored transparent
paper (sweet wrappers for example), students can attempt to reproduce various colors,
from dark to light: cyan, magenta, yellow and white.

314 Pedagogical Module

Research: Understanding how a grayscale image is encoded

The same file, named 3-3.3_research_grayscale, is opened on the left using a text editor and on the
right using an image editor:

Instructions: Explain what conclusion you can come to on how to encode a grayscale image.
Challenge

Encode this grayscale in the file 3-3.3_challenge_grayscale_blank.pbm and view it onscreen (do not
forget the white pixel on the left!).

Research: Understanding how a grayscale image is encoded

The same file, named 3-3.3_research_grayscale, is opened on the left using a text editor and on the
right using an image editor:

Instructions: Explain what conclusion you can come to on how to encode a grayscale image.
Challenge

Encode this grayscale in the file 3-3.3_challenge_grayscale_blank.pbm and view it onscreen (do not
forget the white pixel on the left!).

HANDOUT 42

Encoding grayscale images

315

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 3

 -
 H

o
w

 t
o

 c
o

d
e

 a
 g

ra
y

s
c

a
le

 o
r

c
o

lo
r.

..
L

e
v

e
l

3
 -

 S
e

q
.3

Research: Understanding how a colored pixel is encoded

The same file, named 3-3.3_research_color, is opened on the left using a text editor and on the right
using an image editor:

Instructions: Replace the figures 7, 0 and 0 in the fourth line of the file by other values between
0 and 7, save, refresh the display in the image editor and observe the changes (use your magnifying
glass!). Explain what can be concluded on how a colored pixel is coded.

Challenge

Code this lighthouse in the pre-completed file 3-3.3_challenge_color_prefilled.pbm
and view it on the screen.

Research: Understanding how a colored pixel is encoded

The same file, named 3-3.3_research_color, is opened on the left using a text editor and on the right
using an image editor:

Instructions: Replace the figures 7, 0 and 0 in the fourth line of the file by other values between
0 and 7, save, refresh the display in the image editor and observe the changes (use your magnifying
glass!). Explain what can be concluded on how a colored pixel is coded.

Challenge

Code this lighthouse in the pre-completed file 3-3.3_challenge_color_prefilled.pbm
and view it on the screen.

HANDOUT 43

Encoding color images

316 Pedagogical Module

Lesson 4 - How to ensure a
message is secure

Summary To protect their messages, students learn about encryption using a
simple algorithm (called Caesar’s Cipher), which involves shifting the
letters of a message.

Key ideas

 (see Conceptual scenario, page 204)

“Information”
•	 Encrypting a message means transforming it so that only the

person to whom it is sent can understand it.

•	 Caesar’s Cipher is an easy method to use, but it is also easily
decrypted.

Inquiry-based methods Experimentation

Equipment For each student
•	 Handout 44, page 321
•	 Handout 45, page 322

For each group
- Handout 46 (page 323) (only if the teacher chooses to do

the extra activity, where students make a tool to encrypt and
decrypt a message)

Glossary Encrypting
Duration 1 hour 30 minutes

Decluttering situation

Introductory question The teacher tells the class about the space mission: “The discovery team
needs to communicate regularly with base. The base is also in permanent communication with
the Earth. But we have to be sure that the messages can not be intercepted by hostile powers
that might spy on our results and endanger the team’s safety. What can we do to help them?”
The class discusses different ways of maintaining confidentiality: the words “secret language”
and “coded language” very quickly emerge. Here, there is a risk that students confuse the
“coding” presented in the previous lessons (in the sense of binary code) and the use of the
word here (in the “encrypted” sense). The teacher explains the new term, “encrypted language”.
Encryption means changing a text to make it less intelligible, so that non-authorized persons
cannot access the content of the text.17

Experiment: Decrypt the explorers’ message

(as a class activity)

The teacher hands out the encrypted sentence on Handout 44 to students: “Here is a message
sent by the explorers to the base. Can you decrypt this message?”

17 In terms of vocabulary, see the scientific note in Lesson 1.2 (page 213)

317

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 H

o
w

 t
o

 e
n

s
u

re
 a

 m
e

s
s

a
g

e
 i

s
..

.
L

e
v

e
l

3
 -

 S
e

q
.3

Teaching notes

- To make the encryption simpler and focus on the method rather than the result, we
will not include punctuation.

The class quickly figures out that the message is written backwards. By reading from right to
left, we can discover the content:

RIVAL TEAM SPOTTED WE MUST CIPHER OUR COMMUNICATIONS

The class will have noticed how easy it was to “break” this first encryption. Encryption in “mirror
writing” is therefore not very secure. We will now study a slightly more complicated encryption
method, one of the first to be used in history.

Experiment: Decrypt the message from the base

(as a class activity)

The teacher gives each student Handout 45. “In response to the alarming message from the explorers,
the base replied the following. Can you decrypt this message?”
It is clear, this time, that the message is not encrypted with “mirror writing”. If the students struggle to
decrypt this message, the teacher can gradually give them pointers, in several ways:

•	 What are the shortest words? What might they correspond to in English? The shortest word
in the English language is “a”. There are also some two-letter words (to, on, in, as, if, at, etc.).

•	 What is the most commonly used letter in a written text in English? (answer: the letter E). What
about in this example?

In the ciphered text, the most commonly used letter is H. We can therefore suppose that “H”
systematically replaces all the ‘E’s in the initial message.

The cipher used here, called the Caesar Cipher, shifts all letters in the alphabet three spaces forward:
A become D, B becomes E, C becomes F, E becomes H, X becomes A, Z becomes C. This is also known
as cyclic permutation. Decrypted, the message becomes:

UNDERSTOOD LET US USE CAESAR S CIPHER

Scientific notes:

•	 Caesar’s Cipher takes its name from Julius Caesar, who used it for his secret
communications during the Gallic Wars.

•	 The key to this code is the shifting of letters. In Caesar’s Cipher, the letters are all shifted
by a certain number (the key). In the example used, the key is +3, which means that, to
encrypt the message, we just need to move all letters 3 places forward in the alphabet
(A becomes D, B becomes E, W becomes Z, X becomes A, Y becomes B, etc.).

•	 With a key of 0, the letters do not shift, and therefore the encrypted message is identical
to the original. With a key of -3, the letters shift in the other direction (A becomes X, B
becomes Y, etc.) which is how we decrypt a message encrypted with the key +3.

318 Pedagogical Module

Experiment: finding other forms of encryption

(in groups)

The third part of this lesson lets students reuse the key ideas dealt with thus far. The teacher
suggests: “Now, in groups, you must improve Caesar’s Cipher to scramble your messages.”
Firstly, the students try to encrypt and decrypt short messages that they invent. Next, the
groups exchange encrypted messages and try to break the encryption key to their neighboring
groups’ messages.

Scientific notes:

•	 There are many encryption methods. It is likely that the students’ first attempts will be
to change the key of Caesar’s Cipher. A variation on Caesar’s Cipher that may emerge
during the experiments would be a variable key that follows a very specific pattern. For
example, the first letter of the message might be shifted +1, the second +2, the third +3,
and the fourth will be back to +1, the fifth +2, and so on. There are infinite possibilities.
The students might also think of deleting spaces, which prevents short words from being
spotted and therefore makes identifying the key used in Caesar’s Cipher more difficult.

Group discussion

One student per group stands up to present the encryption method that their group invented.
The class then discusses the reasons why their encryptions were easy or difficult to break.
This allows student to gradually see that there are several encryption strategies. The class
could possibly invent a common encryption and write a short text that you can send around
neighboring classes to test its strength.

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 Encrypting a message means transforming it so that only the person to whom it is sent

can understand it.
•	 Caesar’s Cipher is an easy method to use, but it is also easily decrypted.

Students write down these conclusions in their science notebook. The teacher updates the
“Defining computer science” poster.

Further study

•	 Documentary study on Alan Turing is highly appropriate after working on encryption. He
directed the team that broke the famous Enigma, the Nazis’ secret code, contributing
to the development of the machines that preceded computers. Read more about this
topic on page 9.

•	 Create encryption and decryption tools:
o First type of tool: a cylinder with wheels that spell out the alphabet. In the image

below, strips measuring 138x5 mm are printed with all letters of the alphabet from

319

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 H

o
w

 t
o

 e
n

s
u

re
 a

 m
e

s
s

a
g

e
 i

s
..

.
L

e
v

e
l

3
 -

 S
e

q
.3

A to Z, then wrapped around a cardboard roll. The strips are taped to themselves,
and not to the cardboard, so that the roll can be used as an axis. By turning the
wheels, we can rapidly encrypt and decrypt a message. Here, CAESAR’S CIPHER
(which can be read on the central line) becomes “FDHVDU V FLSKHU”, and so on.

- Second type of tool: a slider system, with strips laid next to each other. Each strip
has the alphabet printed twice. Using a ruler, the sliders can be aligned to reveal
the message. Then we slide the ruler vertically in one direction and the other to
read the encrypted message.

- Third type of tool: two concentric discs attached with a brass fastener. Around the
edges of the discs, the alphabet letters are placed. By pivoting one disc, it is easy to
quickly encrypt and decrypt any letter.

320 Pedagogical Module

Kévin Faix’s fourth grade class (Le Kremlin Bicêtre)

321

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 H

o
w

 t
o

 e
n

s
u

re
 a

 m
e

s
s

a
g

e
 i

s
..

.
L

e
v

e
l

3
 -

 S
e

q
.3

Instruction: The base has received the following message. Can you decrypt it?
SNOITACINUMMOC RUO REHPIC TSUM EW DETTOPS MAET LAVIR

--
Instruction: The base has received the following message. Can you decrypt it?
SNOITACINUMMOC RUO REHPIC TSUM EW DETTOPS MAET LAVIR

--
Instruction: The base has received the following message. Can you decrypt it?
SNOITACINUMMOC RUO REHPIC TSUM EW DETTOPS MAET LAVIR

--
Instruction: The base has received the following message. Can you decrypt it?
SNOITACINUMMOC RUO REHPIC TSUM EW DETTOPS MAET LAVIR

--
Instruction: The base has received the following message. Can you decrypt it?
SNOITACINUMMOC RUO REHPIC TSUM EW DETTOPS MAET LAVIR

--
Instruction: The base has received the following message. Can you decrypt it?
SNOITACINUMMOC RUO REHPIC TSUM EW DETTOPS MAET LAVIR

--
Instruction: The base has received the following message. Can you decrypt it?
SNOITACINUMMOC RUO REHPIC TSUM EW DETTOPS MAET LAVIR

--
Instruction: The base has received the following message. Can you decrypt it?
SNOITACINUMMOC RUO REHPIC TSUM EW DETTOPS MAET LAVIR

--
Instruction: The base has received the following message. Can you decrypt it?
SNOITACINUMMOC RUO REHPIC TSUM EW DETTOPS MAET LAVIR

--
Instruction: The base has received the following message. Can you decrypt it?
SNOITACINUMMOC RUO REHPIC TSUM EW DETTOPS MAET LAVIR

--
Instruction: The base has received the following message. Can you decrypt it?
SNOITACINUMMOC RUO REHPIC TSUM EW DETTOPS MAET LAVIR

--
Instruction: The base has received the following message. Can you decrypt it?
SNOITACINUMMOC RUO REHPIC TSUM EW DETTOPS MAET LAVIR

HANDOUT 44

Simple examples of secure communication

322 Pedagogical Module

Instruction: The base sends this new message to the explorers. Can you decrypt it?
XQGHUVWRRG OHW XV XVH FDHVDU V FLSKHU

Instruction: The base sends this new message to the explorers. Can you decrypt it?
XQGHUVWRRG OHW XV XVH FDHVDU V FLSKHU

Instruction: The base sends this new message to the explorers. Can you decrypt it?
XQGHUVWRRG OHW XV XVH FDHVDU V FLSKHU

Instruction: The base sends this new message to the explorers. Can you decrypt it?
XQGHUVWRRG OHW XV XVH FDHVDU V FLSKHU

Instruction: The base sends this new message to the explorers. Can you decrypt it?
XQGHUVWRRG OHW XV XVH FDHVDU V FLSKHU

Instruction: The base sends this new message to the explorers. Can you decrypt it?
XQGHUVWRRG OHW XV XVH FDHVDU V FLSKHU

Instruction: The base sends this new message to the explorers. Can you decrypt it?
XQGHUVWRRG OHW XV XVH FDHVDU V FLSKHU

Instruction: The base sends this new message to the explorers. Can you decrypt it?
XQGHUVWRRG OHW XV XVH FDHVDU V FLSKHU

Instruction: The base sends this new message to the explorers. Can you decrypt it?
XQGHUVWRRG OHW XV XVH FDHVDU V FLSKHU

Instruction: The base sends this new message to the explorers. Can you decrypt it?
XQGHUVWRRG OHW XV XVH FDHVDU V FLSKHU

Instruction: The base sends this new message to the explorers. Can you decrypt it?
XQGHUVWRRG OHW XV XVH FDHVDU V FLSKHU

Instruction: The base sends this new message to the explorers. Can you decrypt it?
XQGHUVWRRG OHW XV XVH FDHVDU V FLSKHU

HANDOUT 45

Another example of secure

323

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 4

 -
 H

o
w

 t
o

 e
n

s
u

re
 a

 m
e

s
s

a
g

e
 i

s
..

.
L

e
v

e
l

3
 -

 S
e

q
.3

HANDOUT 46

Making encryption and decryption tool

324 Pedagogical Module

Lesson 5 - (Optional) How to make
sure our data are successfully sent

Summary Students learn that it is possible to detect and correct errors introduced
when storing or transferring a file by adding the right information. This
lets them do a sort of «magic trick».

Key ideas

 (see Conceptual scenario, page 204)

“Information”
•	 The information is stored in a memory: hard disk or flash

memory, for example.
•	 Storing and handling data with these memories may introduce

errors.
•	 There are methods that allow us to detect and correct these

errors. This requires increasing the quantity of information to
be stored.

Inquiry-based methods Experimentation

Equipment For each group
•	 A pack of 36 cards (standard playing cards or simply cards with

one black side and one white side)

Glossary Parity bit, data integrity
Duration 1 hour

Foreword
It is possible that students will not come up with the method known as “parity checking”
themselves. We propose two variations of this lesson. In the first (described step by step, below),
this method is formulated together as a class. In the second (a quick description at the end of
the lesson), the teacher does a “magic trick”, which the students should be able to understand.
Introductory question The teacher shows an image similar to that studied at the beginning of
Lesson 3.1 (page 296) and its binary code (here, we have removed the heading of the file “P1
5 5” which indicates that it is a black and white image with 5x5 pixels):

0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
0 1 0 1 0
0 0 1 0 0

The teacher asks the students what would happen if, when sending, certain errors occurred,
that changed the value of certain pixels. They change any value, and ask a student to come to
the board and draw the new image. If the teacher has changed the underlined value, the new
image is:

0 0 1 0 0
0 1 0 0 0
1 0 0 0 1
0 1 0 1 0
0 0 1 0 0

325

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 5

 -
 H

o
w

 t
o

 m
a

k
e

 s
u

re
 o

u
r

d
a

ta
 a

re
..

.
L

e
v

e
l

3
 -

 S
e

q
.3

Teaching notes

•	 This initial question is deliberately chosen to be very easy, which enables the class to
recapitulation and refresh what they learned in Lesson 3.1 (page 296).

Research (as a class): How to detect an error

The teacher asks the students how we can make sure that the image we receive is indeed the
one that was taken. The aim is not yet to correct potential errors, but just to learn how to detect
them. Another way of saying it is to ensure the data’s integrity.
Some students may have the idea of adding extra information. They could, for example, calculate
the sum of the values line by line and add a number that encodes this value. Or, a simpler (and
more practical) option would be to see if the number of 1s on each line is odd or even. In that
case, at the end of each line a new number is added so that the number of 1s is always even
on every line.

•	 If the number of 1s on the line is already even, then we add a 0 at the end of the line.
The new, completed, line still has an even number of 1s.

•	 If the number of 1s on the line was uneven, then we would add a 1 at the end of the
line. The newly completed line now has an even number of 1s.

When applied to the first image, the result is as follows:
0 0 1 0 0

0 1 0 1 0

1 0 0 0 1

0 1 0 1 0

0 0 1 0 0

0 0 1 0 0 1

0 1 0 1 0 0

1 0 0 0 1 0

0 1 0 1 0 0

0 0 1 0 0 1
We added a new column so that, on each line, the number of 1s would be even. The teacher
closes their eyes and asks a student to change any value without telling them. All they need to
do, then, is count, line by line, the number of 1s to find out which line poses a problem.

Scientific notes:

•	 This method is often used in IT to detect (and correct, see below) errors when copying
or sending files.

•	 The added bit at the end of the line is called a “parity bit”.

Research (class activity): How to correct the error

The class points out that they can tell there is an error, but they do not know how to correct
it, because we do not know which pixel has been changed. All we know is the number of the
line where there is a problem. In order to find out precisely which value has been changed, we
need to know the number of the column.
The teacher asks the class how to do it. This time, it is easier for the students to find the answer.
They need to do the same as before, but in columns rather than lines. We count the number of
1s in each column and add another line so that, in each column, the number of 1s is always even.
When applied to the first image, the result is now as follows:

326 Pedagogical Module

0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
0 1 0 1 0
0 0 1 0 0

0 0 1 0 0 1

0 1 0 1 0 0

1 0 0 0 1 0

0 1 0 1 0 0

0 0 1 0 0 1

1 0 0 0 1 0

A student can now change a value anywhere and the teacher shows that they are able to
detect this value (by cross-referencing the information in the line and the modified column)
and then correcting it.

Scientific notes

•	 The parity bit added in the bottom-right corner allows us to detect (and correct) an
error that has occurred, not in the bits of the 5x5 grid (the original image) but in the
parity bits themselves.

Exercise (in groups)

Once the method is explained, the teacher divides the class into pairs or groups of four
(depending on the equipment available) and hands a set of cards to each pair. The students
practice detecting and correcting errors.

•	 The student being tested covers their eyes while the rest of the group agree on a pattern
they make with the cards (each face card is a 1, while each pip card is a 0).

•	 The student being tested opens their eyes and places the extra cards (“parity bits”).
•	 The student being tested covers their eyes again while the others turn over 1 card.
•	 The student being tested should be able, when looking at the parity bits, to figure out

which lines and columns were changed, and therefore correct the errors.

Teaching notes

•	 If the class is not sure whether the student is using the parity method and not just playing
by memory to identify and correct the error, they just need to increase the number of
cards (i.e. the number of bits) and avoid creating an easily memorized pattern.

Group discussion

The teacher makes sure that all students have understood the parity checking method and asks
them what would happen if two errors, for example, occur on the same line. The class realizes
that, in this case, the error is detectable because the parity of certain columns has changed,
but the error cannot be corrected because we do not know which line has been corrupted.
The class discusses how to minimize this risk. For example, we could increase the number of
parity bits (instead of placing one parity bit for every five bits, as we have done here, we can
place a parity bit every three bits). The higher the number of parity bits, the easier it is to
detect errors. However, on the other hand, the quantity of information to be stored (and later
sent) must be increased.
In practice, inserting one parity bit every five bits means increasing the information by 20%,
and so the file size also increases by 20%. Depending on the volume of information and the
reliability of the storing or sending processes, we can decide if we reduce it to 10% or even
1%: it is a compromise to be made.

327

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
L

e
s

s
o

n
 5

 -
 H

o
w

 t
o

 m
a

k
e

 s
u

re
 o

u
r

d
a

ta
 a

re
..

.
L

e
v

e
l

3
 -

 S
e

q
.3

Conclusion and lesson recapitulation activity

The class summarizes together what they learned in this lesson:
•	 A computer represents all types of information using binary code.
•	 When saving or handling (copying or sending, for example) data, errors can occur.
•	 Certain methods, such as parity checking by adding parity bits, allow us to detect and

correct these errors. This requires increasing the quantity of information to be stored.

Students write down these conclusions in their science notebook. The teacher updates the
“Defining computer science” poster.

Variation

This lesson can be conducted differently, by breaking away from the inquiry-based method,
where the problem posed has no relation to what was studied in previous lessons. However,
this variation can be of value, even if it’s just for fun.

•	 The teacher explains that they will do a “magic trick”.18

•	 The class is divided into four groups. Each group has 25 cards on the table, laid out in
a pattern of five lines by five columns.

•	 The teacher goes from table to table, placing extra cards at the end of each line and
column, making sure to keep them even (the number of face cards should be even),
without explaining to the students what they are doing.

•	 They then ask each group to change one card (just one!) and then checks each group,
revealing the card that was changed.

•	 The rest of the lesson can be conducted similarly to what was described above, so that
the students discover and grasp the teacher’s method.

The students can do this magic trick at home — success guaranteed!

Extended study for middle school (4th Level)

The class can extend this study, for example by looking for the four errors that cannot be
detected or corrected. They may also study the practical applications of this “parity-checking”
method.

•	 The American Standard Code for Information Interchange (ASCII) is a 7-bit code of
alphabet letters and punctuation. Generally, computers use 8-bit (octet) packets. The
last bit is used as a parity bit.

•	 Internet connections use protocols (such as TCP-IP), which use parity bits to check the
integrity of data sent.

•	 An Internet Blog Serial Number, or ISBN, is a book’s unique identification code. It also
contains a checksum, calculated in a similar way, although it is a little more complex
that the social security checksum.

•	 Barcodes also use similar types of checksums.

18 Note: This variation is inspired by an activity taken from the book Computer Science Unplugged
(classic.csunplugged.org).

328 Pedagogical Module

Review: Defining computer
science

Summary This lesson is a review of what computer science is all about using
the poster crated during the previous sequences. With the help of
documentary research, students create a timeline of the key moments
in the history of information science.

Inquiry-based methods Documentary study

Equipment For each group
•	 An A3 poster
•	 Two Handouts, which the group chooses from:

- Handouts 47 and 48
- Handouts 49 and 50
- Handouts 51 and 52
- Handouts 53 and 54
- Handouts 55 and 56

For each student:
•	 Handout 57

For the class
•	 A large white poster board for the final timeline (or Handout 57

printed on an A2 or A1 poster sheet).
•	 Extra copies of Handouts 47, 49, 51, 53, 55 and 57.
•	 The poster “Defining computer science”, filled in throughout

the previous lessons
Duration Two hours, which can be divided into several lessons

Introductory question

The teacher displays on the board the poster that the class gradually completed throughout the
lessons. There are several categories on this poster: “Languages”, “Algorithms”, “Machines”, and
“Information”. To give the poster a historical context, and encourage documentary research,
the teacher asks a question that appears simple: “In your opinion, when was computer science
invented?” The students will probably say that the first computers appeared in the 20th century.
But the teacher will go into more depth on this categorical reply. “Yes, computer science was
created in the 20th century, but are the four fundamental components (name and point to them
on the poster) as recent?”

Research (documentary study)

To begin, the students work in groups of four: each group studies one of the five collections of
images (Handouts 47, 49, 51, 53, 55). Instructions are simple: In your opinion, what does each
image represent? The students write down what they think.
Next, the teacher hands each group the text bundles that correspond to the images they have
already received. The students study the texts, reading them quietly and independently. They

329

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
R

e
v

ie
w

:
D

e
fi

n
in

g
 c

o
m

p
u

te
r

s
c

ie
n

c
e

L
e

v
e

l
3

 -
 R

e
v

ie
w

can use a dictionary for the terms they do not understand. They must then create a poster to
present to the class. The instructions are as follows:

1. In the texts handed out, find the name of what each image represents
2. Stick the four images in the left column of the poster, and add a caption
3. Opposite each image, in the right-hand column, stick the corresponding text
4. Choose a title for the poster

Ideally, each poster could have a different background color (five colors for five themes), but
this is not obligatory.

Scientific notes:

•	 The handouts explain in simple terms the major discoveries that have led to
developments in computer science concepts, and key figures that played a determining
role in the history of this science. Further details are provided in the scientific insights,
and the teacher can use these notes to go into more depth on a personality that they
see as representative.

•	 As in all simplified timelines, this one is partial (in both senses of the term!) It is often
difficult for historians to clearly identify the true inventor of this machine. Often,
history remembers the person that had the idea of combining several inventions, ideas,
techniques, and concepts that other inventors of their era brought to light (for example,
Joseph Jacquard is credited with inventing the punched card, but he used an idea that
was originally Jean-Baptiste Falcon’s, who in turn was inspired by the punched tape
invented by Basile Bouchon, for whom he worked as his assistant). Even more often,
it is due to the work of teams that together developed inventions, when history only
retains one name (Morse Code was Samuel Morse’s idea, but Alfred Vail’s work; Turing’s
Bombe was devised by Rejewski in Poland and completed by Turing and Welchmann in
the United Kingdom, etc.).

Group discussion

Each group presents its poster to the class. One by one, the students in the group present one
of the four poster images (another option is for the teacher to successively project the images
on the board so that they are more easily visible). This group discussion takes about an hour.
If this lesson is in two parts, this may be a good point to stop.

Creating a timeline poster

The last step is to prepare a timeline poster together using all the documents provided. Each
group collects its poster and the teacher hands each student a copy of Handout 57.
Using the information contained in their poster, the students must complete the blank timeline
as best as possible.
Since each group can only partially complete the timeline, the teacher must gather together
in a single, large-format timeline all the elements spotted by the class. They ask each group
in turn to present a significant milestone, with its date and location. The students explain the
words they have discovered. When an image illustrates one of these milestones specifically, it
can be stuck on the giant timeline. A color code can also be introduced, to connect each item
to the corresponding poster (if the posters were created on different colored backing paper).

330 Pedagogical Module

The final timeline should look like this:

200 BCE Antikythera mechanism
100 BCE Julius Caesar encrypts his military messages

9th century Al Khwarizmi explains the first algorithms
1450 Gutenberg popularizes movable type printing
1801 Jacquard invents a mechanism for the weaving loom
1821 Babbage creates the analytical engine

1838 Samuel Morse and Alfred Vail develop Morse Code
1843 Ada Lovelace writes the first computer program
1912 ElectricDog, the first robot

1930 Turing’s theoretical model for a computing machine
1941 Zuse3
1951 Grace Hopper invents one of the first compilers
1961 Unimate, the first industrial robot

1967 IBM invents the floppy disk
1969 ARPANET, the ancestor of Internet, is launched
1985 Invention of the CD-ROM
1990 The CERN invents the World Wide Web
1996 Honda-P2, one of the first humanoid robots
1997 DeepBlue, a computer, defeats Kasparov in chess
1997 Sojourner robot sent to Mars
1999 Aibo, the entertainment robot
2001 Wikipedia is launched

2008 Google launches Google Flu Trends
2012 Facebook reaches a billion members

Conclusion

This timeline can help students reach several conclusions. Firstly, some inventions appeared over two
thousand years ago: calculating machines and clockwork figures fascinated the kings’ courts of Antiquity.
While conceptualizations in mathematics and algorithms appeared in the Middle Ages, computer science
problems (sums, programming, reproducibility and reconfigurability) began to be addressed in the last
three centuries. As the students may have guessed, the first computers were in operation in the middle
of the 20th century. Information sending and data sharing (what we now call Internet) closely followed,
along with the improvement of automatons to become real robots, capable of interacting with their
environment almost autonomously.

Students come up with a common conclusion, which they copy into their science notebooks.
Mathematics and automatons have existed since Antiquity. Technical advances from the 16th century
onwards contributed to the invention of the first calculating machines. In the 20th century, electronics
enabled the first computers, robots and the Internet to be created. While algorithms have been known
and machines produced for a long time, computer science was born in the 1940s when we began to
produce machines capable of performing all algorithms.

331

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
R

e
v

ie
w

:
D

e
fi

n
in

g
 c

o
m

p
u

te
r

s
c

ie
n

c
e

L
e

v
e

l
3

 -
 R

e
v

ie
w

HANDOUT 47

The History of Computer Science: Image collection 1

332 Pedagogical Module

The oldest known gear mechanism
is the Antikythera mechanism, which
is believed to have been invented by
Archimedes in the 2nd century BC. It is
a clock that can forecast the positions
of the sun, the moon and the eclipses,
by turning a simple hand crank. This
masterpiece of mechanics had around
thirty cogwheels.

In 1450, Johannes Gutenberg
revolutionized printing. He improved
the press, the ink, and most
importantly, he made it movable,
which means the press could be
reconfigured as many times as
needed. In the same way, in 1801,
Joseph Marie Jacquard improved
the weaving loom by introducing the
punched card. This card contained
the instructions for how to create a
specific pattern. By using this card on
two different looms, the same pattern
can be reproduced; by changing the
card, the same loom could produce
another pattern.

In the 19th century, navigators found
their way by looking at the positions
of the stars and planets. They needed
precise information. In 1821, Charles
Babbage presented drawings for a
difference machine that would speed
up arithmetic. He never built it, but
he designed another, more powerful
machine: the analytical engine, which
could read the calculations to be made
on punched paper - this was the first
computer concept.

In 1941, the German Konrad Zuse
successfully invented the world’s
first computer, the Zuse3. But it
was destroyed in 1944 by the Allied
bombings.
The race for power had begun, to
rival the human brain. In 1997, the
computer Deep Blue defeated the
world chess champion Gary Kasparov.

HANDOUT 48

The History of Computer Science: Text selection 1

333

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
R

e
v

ie
w

:
D

e
fi

n
in

g
 c

o
m

p
u

te
r

s
c

ie
n

c
e

L
e

v
e

l
3

 -
 R

e
v

ie
w

HANDOUT 49

The History of Computer Science: Image collection 2

334 Pedagogical Module

In 1961, Unimate became the first
industrial robot. It assembled cars for
General Motors. Several variations
followed: robots that painted, welded,
and fitted. Robots made industry easier,
replacing humans for tasks that were
too painstaking, or too dangerous.

Robots enabled scientists to explore
bionics - the study of muscular
movements. They attempted to
reproduce human movement: in
1996, the humanoid robot, Honda’s
P2, could walk up stairs. The versions
that followed learned to modify their
trajectory while walking, recognize
faces and keep their balance.

Robots let us explore where humans
cannot survive. Space discovery took off
again thanks to robots, which explored
the moon and Mars - for example, the
rover Sojourner that conquered Mars
in 1997.
Robots began to be used for entertain-
ment in the new millennium. In 1999,
Sony introduced the pet robot Aibo.

From Antiquity, the best clockmakers
invented the first automatons:
Hero of Alexandria, Leonardo da
Vinci, Vaucanson, and others. But
automatons do not know how to
interact with their environment.
Only in 1912 was the first robot
invented: Electric Dog. Hammond
and Miessner created a little trolley
that moved towards sources of light
it found.

HANDOUT 50

The History of Computer Science: Text selection 2

335

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
R

e
v

ie
w

:
D

e
fi

n
in

g
 c

o
m

p
u

te
r

s
c

ie
n

c
e

L
e

v
e

l
3

 -
 R

e
v

ie
w

HANDOUT 51

The History of Computer Science: Image collection 3

336

Grace Murray Hopper (1906-1992) was
an American mathematician. In 1951,
she improved how dialogues function
between humans and machines. The
computer at that time only obeyed
programs in “machine language” (called
assembly language). Grace created one
of the first compilers, A0-system, which
translated a programming language
close to English into assembly language.

Alan Turing (1912-1954) was a
British mathematician and computer
scientist. In the 1930s, he invented
a theoretical model for a computing
machine, with a calculator and
memory where the program and data
to be processed were stored.
He was also famous for helping
break the Enigma code during the
Second World War. German military
messages, encrypted with 159 trillion
possibilities, could then be decrypted
in 20 minutes.

Augusta Ada King, Countess of
Lovelace (1815-1852), was a British
mathematician. In 1833, Ada Lovelace
met Charles Babbage and discovered his
analytical engine. Where Babbage saw
a reconfigurable calculator, Ada saw the
potential for the first programmable
computer. She wrote the first programs
in 1843, for mathematics and also to
compose music.

Al Khwarizmi (~780-~850) was a
Persian scholar. In “The House of
Wisdom” in Baghdad, founded by
the Caliph Al-Ma’mun (813-833), he
studied geometry and astronomy.
In his work “Kitâb al-jabr wa al-
muqâbala” (where the phonetic of “al-
jabr” gave us the word for “algebra”),
Al Khwarizmi systematizes decimal
notation and algorithms which
describe the methods for everyday
calculations (addition, multiplication,
etc.).

HANDOUT 52

The History of Computer Science: Text selection 3

337

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
R

e
v

ie
w

:
D

e
fi

n
in

g
 c

o
m

p
u

te
r

s
c

ie
n

c
e

L
e

v
e

l
3

 -
 R

e
v

ie
w

HANDOUT 53

The History of Computer Science: Image collection 4

338

In the 1st century BCE, Julius Caesar
coded his military messages to ensure
they remained confidential. To do so, he
substituted letters of the alphabet for
other letters. The messenger just had
to make sure the encrypted message
reached its addressee. This method was
so simple that it was used even during
World War 1 by the Russian Army.

The use of electricity and magnetism
to send information across vast
distances or between the components
of a computer can be applied to writing
information to a memory. After 250
years of loyal service, the punched
card was replaced by magnetic tape.
In 1957, IBM replaced magnetic tape
with a magnetic disk, protected from
dust by a plastic case. The floppy disk
was born.

The compact disc is not a magnetic
information carrier. It is a plastic disc,
read by a laser beam. Initially, the CD
was used to replace vinyl records in
the music industry. In 1985, the same
principle was used to store any form
of digital data. This was the beginning
of the CD-ROM. It rapidly led to the
disappearance of the floppy disk,
before being replaced by DVDs, based
on the same optical technology.

Sending information across vast
distances without a messenger was
the greatest challenge of the 18th

century. Chappe’s telegraph was
complex: it used 92 different signals
and relay stations had to be very close
to one another.
The electrical telegraph simplified
that problem. In 1838, Samuel Morse
and Alfred Vail invented a code
for the telegraph. Their ingenious
creation used short codes for the
most frequent letters.

HANDOUT 54

The History of Computer Science: Text selection 4

339

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
R

e
v

ie
w

:
D

e
fi

n
in

g
 c

o
m

p
u

te
r

s
c

ie
n

c
e

L
e

v
e

l
3

 -
 R

e
v

ie
w

HANDOUT 55

The History of Computer Science: Image collection 5

340

In 2008, Google analyzed the
searches of certain key words
entered by its users (over 40,000 per
second) to detect the appearance of
a flu epidemic and follow its course.
The keywords “‘flu”, “fever” and
“cough” are used most often when
we are sick. But this posed ethical
issues in terms of data privacy.
Meanwhile, more and more people
joined social media sites. In 2012,
eight years after its launch, Facebook
had over a billion members!

To share data, it can be useful to
connect several computers together.
This is how networks were born.
The very first computer network
was ARPANET. In 1969 the US Army
connected some of its computers
in the Universities of Los Angeles,
Stanford, Santa Barbara and Salt Lake
City. This created the basis for the
Internet.

At the CERN, in Geneva, Tim Berners-
Lee developed a protocol that
allowed him to publish pages of text
on a network and more importantly,
to navigate from one page to another
using a link. These links formed the
structure of the pages to form a
world wide web.
On November 13th, 1990, the very
first page on the World Wide Web
contained 6 links. Since then, the
number of websites accessible on
the Internet network doubles every
six months.

Jimmy Wales founded Wikipedia in
January 2001. It is a multilingual,
open digital encyclopedia. It can be
consulted freely on the Internet,
evolves and grows bigger with the
contributions of a vast, volunteer
community. It is one of the ten most
consulted websites in the world!

HANDOUT 56

The History of Computer Science: Text selection 5

341

P
e

d
a

g
o

g
ic

a
l

m
o

d
u

le
R

e
v

ie
w

:
D

e
fi

n
in

g
 c

o
m

p
u

te
r

s
c

ie
n

c
e

L
e

v
e

l
3

 -
 R

e
v

ie
w

200 BCE
100 BCE

9th century
1450
1801
1821

1838
1843
1912

1930
1941
1951
1961

1967
1969
1985
1990
1996
1997
1997
1999
2001

2008
2012

HANDOUT 57

The History of Computer Science: A Timeline

342

The 1, 2, 3 Code! website
Support for the classroom project
The “1,2,3...Code!” project has its own website, designed to be used as a support in the classroom.

http://www.123codez.fr/en

The website provides a space for classes to exchange ideas and help each other via a selection of
collaborative tools. Each class can record their work’s progress in a blog, upload their multimedia
productions and consult and comment on productions by other classes.
A forum allows teachers to ask their colleagues and the project scientific and teaching consultants
questions, thereby finding help and support in putting this project into practice.
Lastly, an interactive map allows users to make contact (twinning, visits, penfriends, etc.) with other
classes conducting the project, either nearby or further away.

Teachers' area

The teachers’ area is a space for teachers to get information about the project and sign up. This
registration provides access to a comprehensive range of scientific and teaching documentation, as
well as the collaborative functions mentioned above:

• The teaching module is fully available online.

• The pedagogical and scientific backgrounds are also available online, in more detailed and
updated versions than the print.

• The documents used in class can be downloaded (and projected or printed in better quality
than photocopies).

• Useful files to conduct the plugged lessons (sprites, prefilled programs or corrected ones).

343

W
e

b
s

it
e

 d
e

d
ic

a
te

d
 t

o
 t

h
e

 p
ro

je
c

t
&

 P
ro

je
c

t
p

a
rt

n
e

rs

Project partners

La main à la pâte foundation
www.fondation-lamap.org

The La main à la pâte foundation aims to help improve the quality of science
and technology education in primary school and middle school, where the curriculum common core
provides equal opportunities for all. In France and abroad, the Foundation’s activities are oriented
towards support and professional development for science teachers. The Foundation is the general
coordinator for the “1,2,3...Code!” project, designs pedagogical tools for teachers and disseminates
the project in classrooms. It hosts and manages the website dedicated to the project and implements
a teachers training plan.

Institut national de recherche en informatique et en automatique (French national

institute for computer science and applied mathematics) – www.inria.fr

The French national institute for computer science and applied mathematics (INRIA)
aims to build a network of skills and talents across French and international research facilities. In
addition to research, INRIA’s role is to provide scientific mediation. This means helping to educate
enlightened citizens, fostering understanding among all of this new dimension of existence created by
digital technologies, sparking curiosity through innovative applications, encouraging the participation
and involvement of everyone in creating a digital world, and helping to combat the digital divide. INRIA
played a major role in the deployment of ISN (computer science and digital technologies) education
and scientific culture activities on these topics. INRIA provided scientific expertise in the creation of
the teaching guide, “1,2,3...Code!”.

France IOI - www.france-ioi.org

The association France-IOI works to help as many young people as possible discover and
advance in programming and algorithmics. It develops tools and content for this purpose

and provides them free of charge to the public. It co-organizes the Castor Informatique competition
with INRIA and the Ecole Nationale Supérieure de Cachan, and provides a platform for programming and
algorithmics education through practice and at the learner’s own pace. France IOI provided scientific and
teaching expertise in the creation of the “1,2,3...Code!” project and created online activities for students.

Class’Code - http://classcode.fr

Class’Code is an ambitious project initiated by INRIA, bringing together a number
of actors in the fields of computer science, education and science culture. Its aim
is to design and deploy at a large scale, blended learning (distance and classroom)

for educators and all those who want to introduce young people to computational thinking. Class’Code’s
support to the La main à la pâte foundation enabled free, large-scale distribution of the teaching guide
“1,2,3...Code!” and permitted teacher and teacher trainer courses to be provided.

Microsoft - www.microsoft.com

Microsoft is a technology company founded in 1975 and with operations in 107
countries. In France, Microsoft employs 1,700 people and works with more than

11,000 partner companies. Microsoft conducts various initiatives to help young generations acquire a
good understanding of programming, in particular through the Imagine Cup and DigiGirlz. The release
of Minecraft Education in June 2016 added to the company’s approach to teaching students to code.
Lastly, Microsoft contributes to the “1,2,3...Code!” project by supporting the free distribution of the
teaching guide and by hosting teacher training courses provided by the La main à la pâte foundation.

344

Google - www.google.com

Google is a global technology leader that aims to improve access for all to information.
Google’s innovations in research and online advertising have made it one of the top websites and one
of the most easily recognized brands in the world. Google is committed to supporting improvements in
access to education and enabling all groups to discover computer science. That is why Google supports
the La main à la pâte foundation for the free distribution of the teaching guide “1,2,3...Code!”, as part
of the inclusion of computer science in school curricula. This support will also enable the La main à la

pâte foundationto establish nationwide communities that include teachers, university academics and
institutions to promote professional development in computer science among peers.

Educaland - www.educaland.com

Educaland, a brand belonging to the Jeulin company, is a publisher of teaching materials for
primary education. In partnership wtih the La main à la pâte foundation and Le Pommier
publishers, Educaland produced an educational toolkit tailored to the “1,2,3...Code!” project.

Mobsya - www.mobsya.org

Mobsya is an association that aims to promote science and technology among young
people. It was created as a result of the collaboration between research institutes who

worked on the creation of the Thymio robot. It is in charge of producing, distributing and marketing
Thymio and helps showcase the product, either for individuals or for schools, mainly by working together
on the development of educational equipment.

Editions Le Pommier - www.editions-lepommier.fr

Le Pommier aims to make the language of science and philosophy accessible. Their books
help young and old to understand the world, while marvelling at all it has to offer. Le
Pommier contributed to this project by publishing the teaching guide and making it freely
available online.

International Science, Technology and Innovation, Centre for South-
South Cooperation under the auspices of UNESCO (ISTIC)
- www.istic-unesco.org

The International Science, Technology and Innovation Centre for
South-South Cooperation under the auspices of UNESCO (ISTIC) was

established as a follow up of the Doha Plan of Action which has been adopted by the head of States and
Government of the Group of 77 and China. ISTIC is a UNESCO Category 2 Science Centre and acts as an
international platform for South-South cooperation in science, technology and innovation and makes
use of the network of the G77 plus China and the Organization of the Islamic Conference (OIC). The
overall goal of ISTIC is to increase the capacity for management of science, technology and innovation
throughout developing countries.

