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The Fibonacci Project
brings back maths into classrooms

In many classrooms the same ritual presents itself each day: Teacher stands in front of class at the
black- or whiteboard demonstrating methods. Students copy the methods down in their books
and then work through sets of near-identical tasks, practising the methods. This type of teaching
is not only dry and boring but also highly ineffective. Students learn very fast that the way to be
successful in maths is to watch the teacher carefully and to copy what he/she does. So it is even
possible that students leave school with fairly good grades in maths but no understanding of what
they are doing.

But how can we promote mathematical understanding? How can our maths classrooms become
centres of vivid mathematical thinking? The message is clear: We have to follow the American
mathematician Paul Halmos who demanded: “Don’t preach facts, stimulate acts.” Problem solving
and creating new problems belong to the essence of mathematics. This is the focus of our Fibonacci
project. The inquiry-based approach to teaching and learning helps to develop mathematical thin-
king skills and to understand fundamental ideas and methods. We do not start with formulas and
rules, we get them at most at the end of the learning process. Mathematics is a participatory sport.
Therefore we prefer an experimental approach. We have to create situations that challenge the
students’ curiosity. Teachers should pose problems proportionately to their students’ knowledge
and help them to solve these problems with stimulating questions. More than by reading and liste-
ning, mathematics is learned by really doing maths. That means by analysing situations, by making
guesses and conjectures, by computing, by problem solving, and by discussing ideas with other
students. And, in analogy to learning a sport, making mistakes and then making adjustments are
clear parts of the experience. When students are given opportunities to ask their own questions
and to extend problems in new directions, they know mathematics is still alive, not something that
already has been decided and just needs to be memorized.

After the decision for inquiry-based learning in maths, teachers need structuring elements to orga-
nize classroom work and learning processes. In the Fibonacci Project we have chosen so-called
basic patterns” to indicate which direction teaching should take. These basic patterns can be
regarded as an overarching concept for implementing inquiry-based maths education in the class-
room and in teacher education (cf. chapter 2). But to initiate a change in teaching and learning we
have to provide teachers with suitable examples, we have to develop new materials together with
the teachers.

All our Fibonacci maths partners have really done an excellent job. We have exceeded our target
achievements without disregarding the high quality of our work. There has been a very productive
and intensive collaboration between the different Fibonacci Centres and the participating schools.

We mustn't forget that each country has its own tradition in teaching and learning. Teachers and
parents only accept changes when this tradition is respected and changes take place in small steps.
So our examples show the variety of inquiry-based approaches (also including ICT) in Bulgaria,
Czech Republic, Germany, and Switzerland.

I want to use this opportunity to thank all the teachers in the participating European countries who
have been extremely committed in the Fibonacci project. Although the EU-Project is now finished |
am convinced that our Fibonacci ideas will survive because they have been proved as a stable basis
for inspiring and sustainable teaching and learning. With the Fibonacci Project we have started a
fast growing dissemination process similar to the iterative growth of the Fibonacci sequence.

Peter Baptist

* The scientific committee has characterized the “basic patterns” as “key features of inquiry

pedagogy”, thus underlining the importance of this concept for the Fibonacci Project
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1 Towards New Teaching
In Mathematics

Peter Baptist

1.1 What is mathematics? —What a question!

Most people do not have an accurate picture of mathematics. They view mathematics as a set of formulas to be
applied to a list of tasks and problems at the end of a textbook chapter. But that’s not maths at all.

The reason for this misjudgement is the way, how maths is frequently taught at schools. Often people assume
that maths is the study of numbers and shapes. But maths is more. In fact, the answer to the question “What is
mathematics?” has changed several times during the course of history and it is neither possible nor necessary to
give a precise answer. A good approach to a reasonable answer is to observe how mathematicians work.

Open your mind for the beauty of mathematics

Problem solving is at the core of a mathematician’s work and it often starts with the making of a guess. After-
wards mathematicians engage in a process of conjecturing, refining with counterexamples, and the proving.
Such work is exploratory and creative, and many insiders draw parallels between mathematical work and art or
poetry or music (cf. also 8, 17, 10). Here one likes to quote the famous English number theorist Godefrey Harold
Hardy (1877 —1947): “A mathematician, like a painter or a poet, is a maker of patterns. If his patterns are more
permanent than theirs, it is because they are made with ideas. ... The mathematician’s patterns, like the pain-
ter's or poet’s, must be beautiful, the ideas, like the colours or the words, must fit together in a harmonious way.
Beauty is the first test; there is no permanent place in the world for ugly mathematics” 2.

This beauty to which Hardy is referring is a very specific one, he thinks of abstract forms and logical structures.
The outstanding mathematician and philosopher Bertrand Russell (1872 — 1970) denotes this beauty as “cold
and austere”. In the first instance this kind of beauty can only be appreciated by mathematical people, but it is
a very important task to open the minds of all people interested in this beauty. There are a lot of appropriate
examples like Euclid’s ingenious proof that there are infinitely many primes or the existence of only five regular
polyhedrons.

Mathematics as science of patterns

Maths as the study and classification of patterns should be used in a very wide sense, to cover almost any kind
of regularity that can be recognized by mind. According to Keith Devlin maths as the science of patternsis a way
of looking at the world, both the physical, biological, and sociological world we inhabit and the inner world of
our minds and thoughts.

The American novelist and journalist Rick Shefchik has illustrated this perspective in his weekly newspaper
column Go Ask Dad. | am quoting from How many journalists does it take to ...

“The call from my wife came at about 4 p.m. while | was at the office — the kind of a call every parent dreads. “If
twelve kids are standing in line at a drinking fountain, in how many different orders can they stand?” | paused to
let her question sink in. There would be no doubt about it. This was our 14-year-old daughter’s math homework.



“l don’t have any idea,” | admitted. “One hundred and forty-four?” (Remark: This kind of answer is very typical. A
person has no proper idea how to solve the given problem, but nevertheless he blindly uses a formula or an arithmetic
operation —here 12? = 144 — without any careful thinking about the problem.) “She says that’s not right.” *“Does her
book say how to do it?” "She didn’t bring her book home today. That's why we called you. We thought some-
body there might know how to do it.” | glanced around me. | was surrounded by some of the finest minds the
American college and university system had ever turned out. Unfortunately, they were all journalists. “Anybody
know how many different ways twelve kids can stand in line at a drinking fountain?” | asked those nearest me.

The math poison slowly spread from desk to desk. Tiny beads of sweat popped up on a few foreheads as these
English and journalist majors experienced tragic flashbacks to math classes they barely escaped with their lives.
“*One hundred and forty-four?” somebody guessed. “I'm told that’s not right,” | said. “There’s only one way,”
another scribe said. “"The way the teacher tells them to stand.” Well, he obviously hadn't been in a school for
several decades. Besides, that wasn’t the answer the math homework sheet was looking for.

I told my wife we were stumped, and | expected all of us go back to writing our tight, prize-winning declarative
sentences. But the question lingered in the air: How many ways can you line up twelve kids at a drinking foun-
tain? I began bouncing ideas back and forth with my two nearest colleagues ...

We began with scratch pads. Two people, we rapidly figured out, can stand in only two possible orders. Three
can stand in six possible orders. Then it got hard — but when one of my colleagues wrote down all the possible
combinations on a reporter’s notebook and counted 24 of them, “we detected a pattern emerging ..."

In my opinion this cutting from the newspaper column is an excellent example of an experimental access to
mathematics. The journalists discovered for themselves how mathematicians work, how mathematical ideas
arise. Working with special cases and generalizing afterwards are powerful strategies, not only for solving mathe-
matical problems 2. This kind of learning has to be practised more often in our classrooms. | remind you of the
American mathematician Paul Halmos (1916 — 2006) who demanded: “Don’t preach facts, stimulate acts!” 3

Jost’s mathematical garden - Fibonacci flowers

The Swiss painter Eugen Jost compares mathematics with a huge garden with a lot of flowerbeds that are
connected by broad alleys and intricate pathways. He moves in this garden not as a gardener or biologist but as
a friend of flowers. He picks colourful bunches of flowers and collects rare flowers. All these flowers are ingre-
dients of his paintings. Beauty of mathematics: this time not “cold and austere” but attractive and appealing.

Fig. 1: Eugen Jost, Hardy’s Taxi Fig. 2: Eugen Jost, Mediterranean Geometry



Jost's painting Girasole (Fig. 3) shows natural
numbers in the right part and a rectangle that
consists of coloured squares in the left. This geome-
tric pattern is a visual interpretation of the number
sequencel, 1, 2,3, 5,8, 13, 21, 34, ... on the right.

These numbers play an important role in Dan
Brown'’s thriller The Da Vinci Code. There is also a
film adaptation with Tom Hanks acting as Harvard
Professor Robert Langdon. Of course this number
sequence is much older. In 1202 a remarkable book
appeared that brought the decimal numeral system
to the western world. (Up to this time the most
common system in use was the Roman numeral
system.). In his liber abaci (= book of calculation)
Leonardo of Pisa (ca. 1170 — ca. 1240), also called
Fibonacci, described the Hindu-Arabic numerals
and the place-valued decimal system for expressing
numbers. Like in modern algebra texts we also find
word problems in the liber abaci:

How many pairs of rabbits will be produced in a year, beginning with a single pair, if in every month each pair begets
a new pair that from the second month on becomes productive?

The resulting sequence of pairs of rabbits, now known as Fibonacci sequence, is

1,1,2,3,5,8,13, 21, 34, ...

In the last line of the painting we read the word GIRASOLE that is the Italian word for sunflower.
If you look very carefully at the photograph of the sunflower (Fig. 4) you will recognise that the
seeds in the centre of the flower form spirals, some of which curve to the left and some to the right.

Countingthe spirals running clockwise and counter clockwise one gets two successive Fibonaccinumbers (Fig. 5).
These numbers appear in other biological settings such as fruitlets of a pineapple or seeds of a pinecone, too.



Now we consider quotients of successive Fibonacci numbers:

NN
N|w

1 5 8 13 21 34 55
T 1 3758 13' 21" 34"

1 1

Dividing each number by the predecessor, we produce ratios that get closer and closer to 1,618 ..., also known
as the golden ratio. This ratio exists in nature and it turns out to be so pleasing to the eye that it is often used in
art and architecture (e.g. Parthenon in Athens).

proof of
Pythagorean
theorem

With the Fibonacci numbers
we experience maths as
an important part of our
culture (cf. also 9). On the
other hand we have a stimu-
. Frederick Il

lating context where we

have the opportunity to

encounter different number »
systems such as natural

numbers, fractions, decimal
fractions (finite, periodic, biography
semi-periodic), irrational

numbers (golden section).
The next picture (Fig. 6) illus-
trates this extensive context
for teaching and learning
mathematics and formal
education.

growth
of a rabbit
population

decimal
number
system

Fibonacci
numbers
in nature

recursive
number
sequence

1.2 Reconsidering one’s own teaching -
a guiding concept for Fibonacci teachers

There is no doubt that successful instruction has an individual face that is primarily that of the individual teacher.
Well-prepared project ideas and materials provide inspiration, but implementation always has a personal touch.

What distinguishes successful mathematics education at school? How can inquiry-based mathematics educa-
tion be realised? Access to our Fibonacci philosophy is best achieved through conscious consideration of one’s
own teaching. Here certain central themes can serve as means of orientation. These themes take five different
aspects of teaching into consideration:

= teaching style

= work with problems/tasks

= technical contents

= type of achievement testing

= the role as a mathematics teacher.

Each of these items contains a lot of ideas and requires further detailed explanations. For that | refer to my
article Towards Teaching and Learning Inquiry-Based Mathematics in the Background Resources °.



1.3 Considerations by Gunter M. Ziegler:
The impact of the Bayreuth Fibonacci Conference
(September 2010) on teaching and learning
mathematics

1.3.1 What is mathematics? Answers by G. M. Ziegler

In his stimulating and in the meantime much debated talk 1? Ziegler investigated the question of the primary
goal of mathematics education at school. He identified not only one goal but at least three. At first he tried to
clarify what mathematics is. Let’s have a look on his presentation.

a )

What is mathematics? What do you think? Today’s school kids may ask Wikipedia for help — and be disap-
pointed. Indeed, Wikipedia won't help you on that:

“*Mathematics is the study of quantity, structure, space, and change. Mathe- IJ-I' ok

maticians seek out patterns, formulate new conjectures, and establish truth by # .

rigorous deduction from appropriately chosen axioms and definitions.” = 0 o

Indeed, the German version of Wikipedia goes one step beyond this, and as part ¥ A

of the definition of mathematics it stresses that there is no commonly accepted - e

definition. | translate: 1lll|l;r

IKIFEEHA

M v 0 bl il

“Mathematics is the science that developed from the investigation of figures
and computing with numbers. For mathematics, there is no commonly accepted
definition; today it is usually described as a science that investigates structures
that it created itself for their properties and patterns.”

Is this a good answer? | believe that if you ask education bureaucrats, you will often find the belief that
the question What is mathematics? is answered by high-school curricula. But what kind of answer do these
curricula give?

If you ask university mathematicians the same question, they might point you to a very successful book by
Richard Courant and Herbert Robbins that has the title What is Mathematics? 22.

However, this is a question — what is the answer? Indeed, the book called What is Mathematics? was first
supposed to be called something like “*mathematical discussions of some basic elementary problems for the
general public” — before Thomas Mann convinced Richard Courant that What is Mathematics? is the title that
would sell more copies. The subtitle of the latest paperback edition gives more information: “An Elementary
Approach to Ideas and Methods".

Such investigations could give an idea about what mathematics is — but is that all? What is mathematics? It
is at least three things at the same time, which we should consider separately, and to a certain extent also
teach separately:

I. A collection of basic tools, part of everyone's survival kit for modern real life.

Il.  Afield of knowledge with a long history, part of our culture, an art, but also very productive,
indeed a production factor, basis of all modern key technologies.

lIl. A highly developed, active, huge research subject.

N\ J




As a consequence of these considerations GUnter M. Ziegler finds out that one subject mathematics at school is not
enough. Instead he asks for three subjects: Basic Tools, Field of Knowledge (with Applications), Research Subject.

(Mathematics I: BasicTools A

Of course, a primary goal of mathematics education at school must be to equip all pupils with basic mathe-
matics knowledge and abilities. If we are honest, it is not so much mathematics that we really all need and use
in everyday life. But it does include numbers, geometric shapes, probabilities, percentages, and little more
than that. However, when have you last solved a quadratic equation in real life? Differentiated a function?

My impression is that this part is the only one that gets any reasonable fraction of space on the school curri-
culain many countries — but teaching fails miserably, actually for many different reasons, but one of themis
lack of motivation, which stems from the fact that kids are not interested in the topic, which is Mathematics
| without Mathematics II-11I. )

(Mathematics II: Field of Knowledge (with Applications) )

Where does the subject come from? There are 6,000 years of mathematics (or even 22,000 years) full of
stories, of history, of developments, of motivation. Indeed, this part of mathematics should probably be
taught at school in close cooperation or even jointly with physics and astronomy, as they are so deeply linked.

The fact that mathematics is not only a set of rules and a finished product, but that it has history is most
important for the view of “what is mathematics?” — meet the heroes! Stories about Archimedes, Euler,
Gaul}, Sonja Kovalevskaya, Andrew Wiles, Grigorij Perelman, Terry Tao or Lisa Sauermann that can shape
the image of what mathematics is about!

This is also the subject where we can and should connect mathematics with the other arts! This is where
students can experience and feel mathematics. Mathematics as a subject is alive!

Part of Mathematics as a Field of Knowledge has to be a multitude of answers to the question: What is mathe-
matics good for? Indeed, many students need these answers as part of their motivation for studying mathe-
matics. Perhaps you are aware of the fact that mathematics is a key component of virtually all modern key
technologies. All students have to learn about this. They should also get a chance to get in touch with this,
as concretely as possible. Try it out! If possible, on real problems, real data!

J

(Mathematics Ill: Research Subject )

Tell all of them about it! You cannot teach “mathematics research” to all the kids in school, but you have to
show them that it exists. That mathematics is alive, that it is constantly changing. That it is a huge subject,
always expanding! That it encompasses dozens of fantastic areas of studies that you never will hear about
at school, such as topology, ergodic theory, measure theory, group theory, Galois theory, Lie theory, etc.

Also a part of Mathematics Ill: Prepare for University! That is, provide basics, namely all you need to know
and to be able to do if you want to study (maths, or any science, or medicine, or any other advanced subject).
Clearly this should include the basic concepts that will be needed for a successful start into university studies
—concepts such as logic, functions, basic calculus, but perhaps more important: proofs!

Indeed, Mathematics Ill needs to provide skills for mathematics as a research subject — therefore it should

also contain proofs, problem solving strategies, and preparation and possibly training for mathematics

competitions, — on all different levels, from kangaroo (for all the kids) to the International Mathematical
Q)Iympiads(for only a few). )




1.3.2 Comments on Ziegler’s concept

I'd like to add some comments on Ziegler’s concept of Mathematics IIl. Especially the last section is important
for school. The finding and application of problem solving strategies and problem solving itself deliver an excel-
lent feeling of what mathematics research can be. There is a lot of literature in this field (cf. list of references).
Still a “must” is George Polya’s famous book How to Solve It 1*. Polya divides the problem solving process in four
phases: Understanding the problem, devising a plan, carrying out the plan, looking back. Over the years there
have been made suggestions to expand the fourth phase 3: Not only looking back, but also looking forward.
That means for example generalizations, variations of the problem, etc.

4 )

Example: Calculating with the hours of a day

The face of a clock shows the numbers 1 through 12. Take all twelve numbers and use addition and subtrac-
tion to create a term resulting zero.

Try to find several ways of doing it. What do your results have in common?
Varying the task

— Take the six numbers 2, 4, 6, 8, 10, 12 and use addition and subtraction
to produce a term resulting in zero.
— Can you do the same with the six uneven numbers?
— Can you do the same with the numbers 1 through 11 or 1 through 10?
— Suppose the clock falls down and the face splits into three parts.
Is it possible for the sum of the numbers on each part to be the same?

_ J

I do not fully agree with GUnter Ziegler that we should teach Mathematics I, Il, and lll to a certain extent separa-
tely. Our major goal is to enhance the mathematical understanding and knowledge of the pupils. Therefore we
initially have to improve

= their attitude and appreciation towards mathematics,

and then

= their ability to use mathematics in real world contexts.
For that reason we have to create a stimulating learning atmosphere. That means we start with learning envi-
ronments from Mathematics Il in combination with Mathematics lll. It depends of the age and the smartness
of the students how extensive contents of Mathematics Ill are considered. Thus getting involved in interesting

mathematical problems students are more likely willing to do routine exercises and to transform equations and
formulas. This is a condition sine qua non for sustainable learning of Mathematics I.



1.4 Learning mathematics as inquiry

Inmy opinion two of the mostimportant questions we have to answer are: What kind of mathematical knowledge
should remain after school? What is the contribution of mathematics in school to general education?

Of course basic mathematics like basic arithmetic, percentage, understanding various kinds of diagrams, spatial
visualisation are necessary for everybody in our world. All these things belong to Mathematics | described
above. But do we really need 12 school years for that? | remember the severe discussions we had in Germany on
H. W. Heymann's provocative demand that seven years of maths are enough.

Maths education in addition to Mathematics Il and Ill must have an ambitious goal, especially at the Gymna-
sium. | am sure - after a shorter or longer time - most people will forget the details and formulas they have learnt
at school. That's a normal process. But what should, what has to remain of the numerous hours of maths lessons
besides the "Mathematics | basics”? A reasonable answer is: A well-educated person should be able to have a
conversation with a mathematician that is interesting for both partners.

Therefore teachers must also help students to understand the concepts of mathematics, not just the mecha-
nics of how to solve a certain problem. Teachers mustn’t present ready to consume mathematics. They have to
stimulate students to explore, to observe, to discover, to assume, to explain, and even to prove. These activities
characterize how to do mathematics in research. Why shouldn’t we work in the same way in the classroom?

Students have to ask questions — not only teachers

All the mathematical methods and relationships that are known and taught to students started once as ques-
tions, yet students do not see the questions any more. Instead they are taught content that often appears as
a long list of answers to questions that nobody has ever asked. But it's the question that drives mathematics.
When students are given opportunities to ask their own questions and to extend problems into new directions,
they know mathematics is still alive, not something that has already been decided and just needs to be memo-
rized.

For this reason we propagate inquiry-based learning. Inquiry is the process by which we don’t ask: “What is what
we know?” but “"What are the things that we don’t know and what questions can we ask about them?” The possi-
bilities of that process are almost limitless, but at school they are bounded by some institutional restrictions, for
example curriculum, limited time, assessment. Following Hans Freudenthal’s (1905 — 1990) idea of mathema-
tics as a human activity, students should not be considered as passive recipients of ready-made mathematics.
IBME provides opportunities to ask questions, to solve problems, to imagine, to explore. IBME allows students
to reinvent parts of mathematics by themselves.

To begin such a learning process we follow the already above cited Paul Halmos: "Don’t preach facts, stimu-
late acts”. For instance we start with the question: What is the best way to design the surface of a golf ball? In
contrast to a table tennis ball the surface of a golf ball is not smooth. Why not? Solving this problem we meet a
lot of interesting geometric themes, for example volume and surface of a sphere, regular polygons, tessellation
of a plane and of a sphere etc. (cf. also 3). Each of these topics stimulates new investigations.

Here you see my point: At the beginning there is a real world context. The study of the golf ball problem opens
the students’ minds for several standard topics of the curriculum in geometry. The students get the feeling that
maths can be part of their lives.

In the three booklets Towards New Teaching in Mathematics (Bayreuth 2011, all articles are also available online
http://www.sinus-international.net) you will find a lot of examples for your work in the classroom. The articles by
M. Artigue * and P. Baptist ® deliver more detailed and also general considerations on IBME.



The open-ended approach to IBML

Open-ended problems confront students with a situation or a challenge. Examples are newspaper items, inter-
esting or astounding pictures, real-life situations, geometrical configurations, special number sequences.

Example: Speeding drivers (from a newspaper, 1991)

Some years ago, every tenth driver exceeded the speed limit at some time or other. Nowadays it is only
every fifth. But even five per cent of drivers are too many. So speed checks are still with us, and drivers
exceeding the speed limit will have to pay up.

This newspaper item encourages discussion, reasoning, diverse directions and levels of thinking. In contrast to
many traditional tasks it enables everyone to make a start. And additionally it has a diagnosis function: From the
answers the teacher can deduce the understanding of percentages that the students have developed.

Open-ended situations enable students

= to gain their own individual overview of the situation presented to them by selecting, getting, and
evaluating information,

= to develop questions or conjectures,

= to explore individual paths in order to answer the questions posed or to validate conjectures,

= to exchange insights and knowledge with other students or the rest of the class.

Final remark

Our aim is not to work exclusively with inquiry-based tasks or problems. Sustainable results are achieved only
when we have a balance between instruction (provided by the teacher) and independent construction. Routine
tasks still retain their importance for practising or inculcating certain procedures, patterns, or skills. Inquiry in
mathematics classes means asking questions and seeking answers, recognising problems and seeking solutions.
Inquiry-based situations also allow students to show whether they are in a position to apply the knowledge they
have acquired.

* for more details see also
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2 The Basic Patterns as Key
Aspects of Inquiry Pedagogy

2.1 The concept of basic patterns
Dagmar Raab

The Fibonacci project is based on the FP 7 call of the European Commission (EC) inside the work programme
“Science in Society”. The EC required some details that had to be included: "... greater emphasis needs to be
placed on the development of more effective forms of pedagogy; on the development of analytical skills; and,
on techniques for stimulating intrinsic motivation for learning science, taking into account various pre-condi-
tions and cultural differences.”

Therefore, the concept of the Fibonacci project had to be very flexible, with room for national and/or regional
specifications. On the other hand, the EC named strictly obligatory components of the project structure:

The training of the teachers should include actions that contribute towards the following: Securing basic knowledge,
developing a task culture, learning from mistakes, cumulative learning, autonomous learning, experiencing subject
boundaries and interdisciplinary approaches, differentiating between girls’ and boys’ interests, and promoting
pupils’ cooperation.

How can we deal with this apparent contradiction between flexibility and restrictions?

2.1.1 Basic patterns as an underlying core structure

In analogy to the successful module concept of the German SINUS-Transfer programme, we decided to use nine
basic patterns as an underlying core structure of the Fibonacci project.

. Developing a problem-based culture.

. Working in a scientific manner.

. Learning from mistakes.

. Securing basic knowledge.

. Promoting cumulative learning.

. Experiencing subject boundaries and interdisciplinary approaches.
. Promoting the participation of girls and boys.

. Promoting student cooperation.

. Promoting autonomous learning.

OooNOTLULTL S~ WN R

Of course, this array of problem areas didn't just appear from nowhere; it is based on many years of interna-
tional educational research and empirical studies.

2.1.2 What s special about this overarching concept?

Many projects for professional development of teachers use the top-down approach: Ready-made training
units, often dedicated to a specific topic, are offered in isolated training seminars not taking into account the
individual daily problems and needs.
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An effective change of teaching methods will be most successful if the teachers accept the innovation process
and are capable of integrating the changes in their curriculum. Instead of stand-alone training, in-service trai-
ning should be incorporated into a professional, classroom-related development structure that focuses on
continuous development and takes into account the demands of daily classroom teaching 1.

In the Fibonacci project, teachers are seen as experts in teaching and learning who are capable and responsible
for further developing and improving their own classroom teaching. Using the “basic patterns” they can frame
their work, but also share their thoughts and ideas with their colleagues. As learners in the project, teachers are
seen as reflective practitioners 2 who work in a self-directed and cooperative way.

Teachers, together with their in-house mathematics or science department or a regional set of involved schools,
decide which of the deficits in actual science and mathematics instruction described by the basic patterns they
want to address in their work. Training sessions typically start with a brief introduction to the pattern-specific
ideas and their research base. A main focus, however, is to offer innovative examples that can be adapted and
modified to specific classroom situations and, ultimately, incorporated in new concepts. The basic idea is that
teachers develop their views about good instruction by trying out new approaches and sharing their experience
with colleagues at school or at the school network level *. This way of professional development also provides
many opportunities to rethink their normal views of good teaching and learning. It also opens the door for
international communication and exchange, using the same framework but respecting the different national
requirements.

For further reading see “Towards Teaching and Learning Inquiry-Based Mathematics” 3.

2.2 How to work with basic patterns

Peter Baptist, Dagmar Raab

“Dear friend, theory is all grey, and the golden tree of life is green.” — Johann W. v. Goethe (1749 - 1832)

In this short article it is not possible to go into detail about all nine basic patterns. There is plenty of material
available on the Fibonacci server “, in the SINUS International portal %, and on the SINUS-Transfer website .

We will show some examples how to work with selected basic patterns as well as point out the connections
between different basic patterns.

2.2.1 Developing a problem-based culture

The first basic pattern plays a particularly important role in teaching mathematics. Tasks and problems are star-
ting points of mathematics education. Problems characterize mathematics lessons as part of an introduction to
a new topic or as exercises at the end of textbook chapters. If we want to change teaching and learning maths,
it is essential for us to look at how we deal with problems in the classroom.

We have to distinguish several stages. To start, we have three preparatory stages:

= Exploring: Students start learning by exploring texts, materials, situations and events.

= Questioning: Students ask questions to clarify an issue or pose a problem.

= Collecting and planning: Students collect data and information. They think of a range of possibilities to
answer open questions or to solve the problem.

Having a good theory is crucial, but at school it is just as important to provide the right examples to get practice
in this kind of problem solving.
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Here are some suitable problems for such a process:

~

= How much air does this hot-air balloon = Atangram puzzle consists of seven

(fig. 1) contain? geometrical shapes (Fig. 3), so-called
tans that are put together to form specific
shapes. All seven pieces must be used and
may not overlap. Find different tasks and
problems in connection with the tans.

= The photograph shows a balcony railing (Fig. 2).

Consider the quadratic pattern in the space between
two posts. Draw this pattern and write down as many
tasks and problems as you can find.

N\

The next stages in the process are

= Deciding: Students decide which possibility provides the best answer(s) to the questions or the solution
to the problem.

= Communicating: Students choose the best way to present and explain their findings.

= Looking back: Students review their solution. Does it make sense? Is there a better way? They consider
extensions and variations.

Our first basic pattern, developing a problem-based culture, aims at a larger variety of tasks and problems that
allows individual and different solutions at various levels. We have to create problems that

= enable students to find different ways of solving problems,

= systematically repeat content previously learnt,

= allow an open-ended approach,

= make use of a student’s basic knowledge and connect it with newly acquired skills,
= can be transferred to various situations and contexts.
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Furthermore, we have to use a wide variety of teaching methods and strategies when a new concept or pheno-
menon is introduced and elaborated, when known content is applied to new situations, and when computers
are used as a learning tool.

See more examples and background information, e.g. about open-ended tasks and topics with variations on the
SINUS-Transfer server 7 and in the Background Resource “Inquiry in Mathematics Education” 3.

2.2.2 Promoting cumulative learning

“Now we have learned a lot about triangles, the tests on this topic showed quite nice results. Let’s start a new
chapter: Quadrangles.” Does this sound familiar to you?

Most curricula prescribe a strict chronological sequence of aims and contents with a detailed approach. Students
generally like to learn in single portions as it gives them the opportunity to be well prepared for the next exam.
However, by learning this way students don't see the connections between things that they have already learnt
and the topic that they are about to start. Thus, the acquired knowledge remains fragmented, unsuitable for
solving new problems. And, at the latest after the exam to conclude the topic, they forget the material in order
to make room for new things .

So, do we need to completely change the curricula? No, chronological structured contents are not contradictory
to cumulative learning processes per se.

Itis more important to get students acquainted with thinking in a broader context, with persistence and courage
to be unorthodox and not being afraid of failure.

Example: Circumcircle of Quadrangles

Do all quadrangles have a circumcircle?

Let’s imagine for a moment that students have worked intensively on the topic of “circumcircles of a triangle”
and know that there is exactly one circumcircle for each triangle (see also learning unit ?).

Now the question “Do all quadrangles have a circumcircle?” could be a good starting point for reflecting and
broadening the knowledge about circumcircles.

We can use an inquiry-based approach:

The students start with a brief research phase to get oriented, gather first impressions, express assumptions
and discuss. Dynamic learning environments are very helpful at this stage as they enable students to visualize
the problem.

However, special cases such as squares, rectangles, kites and trapeziums will quickly emerge; there is no cohe-
rent system, and special angles or parallelisms cannot be observed either. The position of the circle midpoint
seems to be arbitrary, too (Fig. 4 —7).
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Some quadrangles that probably do not have a circumcircle should be notated on a sheet of sketching paper.

Here are two examples (Fig. 8):

In everyday class situations, tasks that
require entering new terrain, and accor-
dingly more complex analyses, present
considerable obstacles for students. At
the outset there is bewilderment: "l don't
know where to start. We haven’t done
any of that yet ...”

At this point, itis worthwhile to stop and take a good look at the treasures that have already been unveiled. How
does the new situation differ from an already known one?

In this case, the variation of the well-known triangle is moderate: only one angle has been added.

And upon close inspection, a quadrangle
can be represented as a combination of two
triangles. Each triangle has a circumcircle.
Now we have to use our knowledge about the
circumcircle of a triangle and an answer can be
found to the much simpler question: Are the
circumcircles of the two triangles coincident?

A dynamic worksheet helps to recover many
familiar elements in the new situation. The two
triangles can be deduced from the quadrangle
and analysed separately (Fig.9). Finally, they
are merged again into the quadrangle.

A more detailed description of this unit is avai-
lable °.

The role of the teacher in this example can be quite different:

If the students are used to working independently, discussing with their partner or inside a small group, only a
few hints may be needed. At the end, there should be a solution that would be presented by a group or a single
student. Of course, there could also be a solution completely different to the above.

The teacher should lead the students more intensively in classes that are less experienced. Nevertheless,
students should have enough time to deal with problems, think about relationships, tentatively use analogies,
and develop hypotheses £. Besides this, students should be encouraged to write down their individual ideas,
attempts and also their errors.

Teaching and learning this way helps students understand the manifold connections within mathematics, reco-
gnize and analyse logical structures, and deduce new knowledge from what they already know.

In this example we have focused on the basic pattern of “promoting cumulative learning”, but obviously there

are also connections to the patterns of “securing basic knowledge”, “promoting student cooperation” and
“promoting autonomous learning”.
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2.2.3 Learning from mistakes

“Success is the result of correct decisions. Correct decisions come from experience. Experience comes from
wrong decisions.” — Anthony Robbins (author and coach)

Wise words, but the reality is different: Most of the time, we run away from our mistakes. We don’t want to think
about them. It's an unpleasant experience and we feel guilty about failure 0.

But as Anthony Robbins states, we cannot learn if we are not allowed to make mistakes. The fear of making
mistakes prevents us from discovering the unknown. Committing mistakes in the learning environment should
be a positive process, the starting point for further learning, motivation, and the quest for and discovery of
correlations. With this approach we transform subordination to self-responsibility; in other words, “we transfer
some of the learning responsibility to the learners themselves” 11,

When we discuss the role of mistakes in the classroom, we have to consider different situations. A learning situa-
tion needs a climate in which students are “allowed” to make mistakes and to develop “wrong” conceptions 12,
In assessment situations, however, it is not wise for students to express wrong ideas, as they would result in bad
marks.

Soteachers should keep assessment situations to the bare minimum. Learning situations shouldn’t give students
the feeling of being under permanent control. Mistakes, whether occurring in exams or in learning situations,
should never represent personal failure, but rather a challenge for the student or the whole class.

Working with erroneous examples

“Paying explicit attention to (mathematical) errors in class is even considered by many as dangerous since it
could interfere with fixing the correct result in the student’s mind. Hence, traditionally, schools mostly teach
‘positive knowledge’ only and ‘negative knowledge’ is mostly avoided.” 13

Indeed, students will learn best from their own mistakes if they have learned to perform effective error analysis.
To get students acquainted with error analysis it is very helpful to start with erroneous examples, not necessa-
rily ones produced by the student himself or his classmates. Erroneous examples give the opportunity to learn
about different error types, to find the reasons that have led to errors, and to draw conclusions from them. In
addition, some students will increase their self-confidence by analysing and correcting somebody else’s errors
instead of being confronted with their own misconceptions.

For more information on this topic, see the articles by Erica Melis 1 and Michael Katzenbach *.
From error to knowledge - circumcircles and inscribed circles
"l have not failed. I've just found 10,000 ways that won’t work.” — Thomas Alva Edison (1847 - 1931)

Let’s go back to the example of circumcircles and start a new investigation:

Does every quadrangle have an inscribed circle?

As we know every triangle has exactly one circumcircle and an inscribed circle as well. So it seems as if the
inscribed circle of quadrangles will be quickly revealed.

But careful: not every analogous conclusion will lead to the goal.

An attempt to return to the familiar inscribed circle of the triangle by triangle decomposition will fail
as Fig. 10 shows.
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again? Let's go the other way and examine this obvious aberration
first. At least it provides a good opportunity to develop strong argu-
mentation skills.

/ So should we throw away this first attempt and start from scratch

We easily see some first results: In Fig. 10 each of the two circles only
touches two sides of the quadrangle. Both of the circles touch the
diagonal line inside the quadrangle.

Yet the idea to seek a solution by means of two triangles does not
seem absurd. If we can manage to work in analogy to the circum-
! circle, we should try to find triangles that have all three sides in
common with the quadrangle.

Again, a dynamic worksheet is helpful. The quadrangle can be remodelled in multiple ways into a triangle by
placing three vertices on a straight line (see Fig. 11 and Fig. 12) in each case.

Now finding the analogous conclusion about the inscribed
circles of the triangles becomes much easier.

In Fig. 13 we see two triangles around a common inscribed
circle. When overlaying those two triangles you get a
quadrangle with an inscribed circle.

Paul H. Schoemaker formulated a good result of this chapter:
“*Not making mistakes may be the greatest mistake of all.”
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2.2.4 Experiencing subject boundaries and interdisciplinary approaches

Interdisciplinary teaching is not something new. Many curricula include mandatory instructions for interdisci-
plinary classes in all academic years and school types. However, interdisciplinary phases are frequently not yet
integrated into the “regular” lessons. Mostly they take place in the form of project days held once in a school
year — often at the end of a longer learning section, before the holidays or the end-of-school report. As these
projects are clearly separated from the usual lessons, their outcomes mostly remain isolated and don’t result in
sustainable effects.

The strict limitation of the subjects in everyday teaching contributes to the fact that many pupils do not succeed
in correlating what they learn with their everyday life and existing knowledge. Newly acquired knowledge is
compartmentalised and remains reusable only in a restricted scope. This is intensified by uncoordinated juxta-
position and duplication of items all the way to contradictory explanation of the same topic in different subjects.

An interdisciplinary lesson

Algebra is an important topic in mathematics curricula in secondary schools. The following example gives
insight into the role of functions in physical problems as well as into the opportunities to better understand the
mathematics behind such problems. The point of view will change several times, from the mathematical to the
physical aspect.

We start with a mathematical question:

How do the parameters a, b, ¢, d influence the graphs of the family of trigonometric functions

f(x) = a sin[b(x +c)] + d?

A dynamic worksheet helps students observe the possible variations (Fig.16).

The students will certainly find out
the effects of the parameters, but
do they really understand what
they see? How can they keep it in
mind and make use of it in other
contexts?

Arich variety of physical examples
can bring deeper understanding.

[ | | Let's change the point of view and
| | l | look at some experiments about
harmonic oscillations. In  this
case, it could be helpful to work
together with a colleague (or
teacher student) who is an expert
i b o L ! in physics, at least to prepare the
experiments. Mechanical oscilla-
tions and especially sounds are
very motivating and interesting
" for students, as they can analyse,
research and learn using multiple

senses.

20



Now the parameters come alive and are named as amplitude, frequency, and shift. The variable (in mathematics
mostly named x) should be renamed into t as it represents time. We also recognize that the parameter c isn’t
needed yet. Shift will also be ignored for the most part in further investigations. This procedure is also inter-
esting from a mathematical perspective: Irrelevant parameters are eliminated, which means setting their value
to 1 (not zero!).

We go back to the physical aspects: In reality, free oscillations dont look like Fig. 16 because they are damped.
Using some experiments we can find out the change: The amplitude isn’t constant any more, but time depen-

dent and becomes zero after a while.

For further investigations, we need a model that could describe damped oscillations in general. This is a good
time to go back to the underlying mathematics.

We know that we have to modify the amplitude (respective the parameter a). From a mathematical perspective,
this means changing the constant a to a time dependent function a(t). Let’s use the simple function f(t) = sin(t)
for the undamped oscillation. In this case, our function for the damped case looks like d(t) = a(t)sin(t). The ampli-
tude function a(t) is unknown at this stage of exploration. How can we find an adequate function a(t)?

There are many ways to continue. Let's use trial and error, starting as simply as possible.

We decide to give the students a dynamic worksheet, which looks very promising offering a ready-made func-
tion (Fig. 17).

We stay in the “mathematics mode”: Could this be a good solution for our function a(t)?

There are some characteristics that are obviously met: The function is decreasing with limit zero, periodic and
reacting adequately when the frequency is varied.
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At first glance, this function seems to be a good solution ...

until some students find out something strange (Fig. 18):

Fig. 18

There should be an intensive discussion about the underlying mathematics as well as about possible physical
phenomena. If we make use of a ruler, we can easily find the (mathematical) solution (Fig. 19):

Fig. 19
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How you find an exponential function as a proper solution is up to you and your students.

Obviously, this unit can be done in regular lessons as the topics trigonometric functions and oscillations should
mostly be part of the official curricula. Switching from mathematics to physics and back again can foster under-
standing in both subjects: The way of modelling a real-world phenomenon is done step by step, while the under-
lying mathematics becomes meaningful, alive, and ultimately more interesting and motivating.

To develop cross-disciplinary approaches, teachers must first overcome their subject boundaries. Working in
teams that integrate teachers from other subjects could be a good way to deepen knowledge and create new
perspectives.

The example above also has strong connections to other basic patters such as “learning from mistakes”, “secu-
ring basic knowledge”, and “promoting cumulative learning”.

These few examples should provide a basis for discussions in teacher trainings and provoke thought for own
ideas.

2.3 Dialogic Learning — from an educational concept
to daily classroom teaching

w "

Peter Gallin

The development of the concept of self-controlled and sustainable learning is based on a personal encounter
between two teachers of entirely different subjects. Two examples show how uncomplicated teaching
mathematics in the classroom can be, once the teacher has gained the courage to trust in the capabilities
of the children. The three textbooks “Ich — Du — Wir” (*I —You — We") for German and mathematics in the
first six years of elementary school provide support.

With our publication Dialogisches Lernen in Sprache und Mathematik (“Dialogic Learning in Language and
Mathematics”) 22 over ten years ago, Urs Ruf and | attempted to pool the wide variety of experience we had
ourselves gained as Gymnasium (high school) teachers as well as that from colleagues of all school levels we
met in our further training courses. Thus we tried to develop a uniform teaching concept we now call “Dialogic
Learning”. These practical educational reflections, which extensively took place parallel to our teaching work at
high school and remote from empirical educational research at universities, met with a satisfying response in
German-speaking regions and have in the meantime become established in the scientific community. This was
largely due to a shift in our focal points to the University of Zurich, which also freed our concept from the initial
bond with the grammar school subjects of German and mathematics. Nonetheless, the essence of “Dialogic
Learning” still focuses directly on practical classroom activities and on a realistic, efficient time and effort mana-
gement for all persons involved in the lessons. To ensure that the concept can also be implemented at primary
school level, we additionally developed "I — You — We" textbooks for German and mathematics for the first six
years of school, which are used here and there as teaching aids officially approved in the canton of Zurich 18 21,
This article will, on the one hand, present Dialogic Learning in a concise framework and, on the other, provide
pointers to the — by its nature free — use of the | —You — We"” schoolbooks.

2.3.1 Genesis and theory of Dialogic Learning

Over many years, Dialogic Learning was developed through dialog in a constant process of critical analysis of
classroom teaching practices. The foundation was laid in the 1970s in the framework of interdisciplinary coope-
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ration at the Kantonsschule Zircher Oberland in Wetzikon, Switzerland. Urs Ruf, a teacher and professor of
German, and |, a mathematician, were looking for points our two subjects had in common. We quickly realized
that although there are overlaps, they are not of primary importance for high school teaching. Our cooperation
rapidly shifted to the basic problems that students repeatedly have to master in our school subjects. By a stroke
of luck, it turned out that Urs still had lasting memories of his own mathematics lessons at high school —not all of
them of a positive nature. As far as my German lessons at school were concerned, | had endured a similar expe-
rience. This constellation enabled us to analyze the process of learning in these two subjects without having
to take into account common topics. Our interdisciplinary cooperation, which we then called “overlapping”
instead of merely “touching”, was characterized by the following approach: Whenever we examined a topic
involving either German or mathematics, the one who had majored in the subject took on the role of an expert,
the other the role of a novice. In this way, the respective teacher had a student to deal with, who was interested
in the unfamiliar subject and willing to learn, but was also able to clearly indicate and articulate his difficulties.

A concrete example from the beginning of our cooperation serves to illustrate how the didactic dialog between
us took place. What you need to be aware of at this stage is that | have always had a special interest in games
of logic and brainteasers ever since my university student days. At that time, | did not realize their didactic
significance - in contrast to the didactic significance of the specified syllabus for mathematics. Intuitively, | liked
confronting others with such problems because, as a general rule, the people concerned could not simply fall
back on a formula or predefined procedure to solve the problems. One of the characteristics of brainteasers is,
therefore, that they reveal the one-dimensional image of mathematics that many people have. They think that
mathematics is a science that consists of exercises and questions for which a solution can always be found by
means of formulas (algorithms) that have to be learned. Today, we call this restricted (one-dimensional) view
of mathematics a “mathematical injury” (Fig. 20). Unfortunately, even today mathematics instruction rarely
manages to convey a differentiated view of mathematics. This, however, is precisely the aim of Dialogic Lear-
ning in mathematics as a school subject.

Algorithms

Formulas

During our first didactic dialog, | was of course unaware that Urs had been made a victim of this mathematical
injury in his former mathematics lessons, to the extent that he believed he had to answer every mathematical
question immediately with a formula. This is why he felt great distress when | described an authentic problem
I was faced with while filling the tank of my car. As he later admitted to me, his first inner reaction to my story
was: "What algorithm, what formula do | have to use to solve the problem as quickly as possible?” But he didn’t
let it show, of course. As a Germanist, he had learned that attack is the best form of defense. Consequently, he
protested, "What you're telling me here isn't complete at all. To me it sounds like one of those word problems
where the author struggles through a story, but doesn’t disclose the crucial part and beats around the bush. If
he were to reveal it, the problem would no longer be of any interest.” When | denied having withheld any infor-
mation, he retorted, “"OK, I'll prove it to you. I'll write down everything you've told me or better yet: the way |
have understood it.” No sooner said than done. When | read his text, | exclaimed, "Something is missing here!” It
was, of course, a great triumph for him. “That's exactly what | wanted to prove”, he answered. But | didn't relent,
didn’t reproach him and took a closer look at his text. | rewrote it and gave him the new version to read. Then he
said, "Now | don’t understand the story anymore.” He rewrote the story again, after which it became my turn to
declare, “Now the problem can no longer be solved.” The story went back and forth in this manner several times
until we both agreed on the version that resulted from this written dialog. Satisfied with the text, we unfortu-
nately threw away all the previous versions. Today it would be interesting to retrace this development process
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once again. At the time, we were, however, only interested in the final result, which was to become part of a
small book we had decided to publish. For this booklet we jointly formulated fifty puzzles from my collection
word by word, sentence by sentence, as in the first story. It was then published in 1981 by Silva-Verlag Zurich
under the title Neu entdeckte Riitselwelt (*Newly Discovered World of Puzzles”) 2. The first story described above
was included as problem no. 17, which carried the title *While Filling the Tank.”

I had parked my car in front of one of the many gas pumps at a shopping center. A green light
showed me that it was available for use. It was a self-service filling station. When a customer has
finished pumping gasoline, a red light on the pump lights up showing that it is now blocked. The
customer takes the receipt printed by the machine and goes to the cashier, who supervises the
entire filling station. Once the customer has paid, the cashier unblocks the respective pump from a
central control panel. When | lifted the nozzle, I noticed the display had already been reset to zero.
| filled the tank, read off how much gasoline | had put in and took the receipt from the machine.
Without taking a closer look at it, | went to the cashier, handed over the ticket and wanted to pay.
The cashier then exclaimed: "Now it's happened!” He went to the pump and came back with a
receipt showing the right number of liters and the invoice in Swiss francs. What was on the first
receipt? Can you reconstruct the incident?

(N J

Intensive analysis and persistent formulation attempts enabled Urs repeatedly to come up with solutions for
maths problems he was faced with. This happened almost incidentally, not because he had a formula to fall back
on, but because he successfully thought his way through the situation underlying the problem. What took place
here can be represented in our diagram by the additional "I, which symbolizes the position of Urs (Fig. 21).

Ability

Pursuing Understanding

Urs’ encounter with the problem has two characteristic features:

1. The “I” of the learner was evidently activated by my provoking question, and
2. Urs was able to get a hold on the problem through his spontaneous writing.

We call the interaction between question and | “pursuing mathematics”. Initially, the focus is thus not on solving
the problem, but on exploring the question and related aspects at depth until the question becomes a genuine
question for the student himself/herself. It is a well-known fact that parroting the wording of a question by no
means constitutes a real question that students would actually ask themselves. So in the process of pursuing
mathematics, you literally ignore the solution. And a decisive point for us here is that you speak or write in your
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own language, your native language or - as Martin Wagenschein calls it - the language of understanding, not in
some technical jargon or in the arcane lingo of insiders, of people who have already understood 23. It has often
been my experience that intensively “pursuing” mathematics leads students to the solution without their even
becoming aware of it. It was the same with Urs. | had to tell him several times that he had already found the
solution and could stop turning over the question in his mind, pursuing mathematics. It turned out that as a
linguistic expert something completely different fascinated him from what | had anticipated on the basis of my
own subject-related expectations: it was not the concentrated, unambiguous, and apodictic solutions for our
problems, but the entire mathematical landscape surrounding the problem that actually captivated Urs. What
interests him is how to successfully relate the question to one’s own world and to make the most of various
approaches to the mathematical result. The third link in our diagram, the “understanding of mathematics”, is
thus generated quasi automatically if mathematics has been pursued long enough. This experience is supported
by a statement made by philosopher Hans-Georg Gadamer, in which he specifies a necessary condition for
understanding: “The very first stage in the process of understanding is when something appeals to us: that is
the paramount of all hermeneutic conditions.” 1°.

Understanding is never in the hands of the teacher. You cannot

get someone to understand, all you can do is try to increase

the probability that the student will feel the “appeal”, as

Gadamer puts it. Understanding always comes about

unexpectedly, it cannot be planned and organized.

Physicist Martin Wagenschein also asked himself

how understanding comesinto beingand made

the following observation: “Real under-

standing is brought about by talking to

others: based on and stimulated by

something enigmatic, looking for

the reason.” 2% For him, too, it all

_ starts with a person’s conster-

nation over an “enigma”. But

an additional factor comes into

play here, i.e. an exchange with other

people who have also given thought to

the same problem. This aspect has not yet

been taken into accountin our diagram, which

is why we extend it to include a fourth position

- the “You". This was the role | played in the dialog

with Urs by responding to the solutions he tentatively

suggested and raising new “questions” in him through

my reactions. The dialog that develops between an | and a

You in the learning process via the questions and solutions for a
problem is made graphically visible (Fig. 22).

Now the one-dimensional classroom instruction, which is solely limited to teaching formulas and algorithms
(horizontal direction), has become a two-dimensional form of teaching, which includes the vertical dimension
between the positions | and You. The connections between the two positions opposite each other intersect at a
point that we designate as “We.” That is where the regular perceptions of science meet the singular insights that
develop in the dialog between the | and the You (Fig. 23).
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Dimension

| would like to make it of the
mandatory for extended regular
forms of teaching, which

are greatly recommended
nowadays, to incorporate this

feature of two-dimensionality.

To me, they are beneficial only if
the dimension of the singular (added
to the regular) is actually brought into

play. It is, after all, very possible to orga- Dimension
nize modern methodological arrangements of the
in which only the dimension of the regular still singular

counts. Genuine extended teaching therefore

means classroom activities in which an exchange or

dialog between an | and aYou aimed at negotiating and

defining the established regularities of the subject plays a major role, reaching all the way to the assessment and
the awarding of grades 22 vol-2, p- 81ff_Consequently students have the opportunity at school to find out how all
formulas, norms, prescriptions, rules, and algorithms that exist — not only in mathematics — are, in the end, the
result of a dialog, i.e. represent binding rules as a negotiated We position. Let us be clear in our minds about the
fact that particularly in science all norms and substantiated results are ultimately the outcome of a dialog, an
agreement among experts.

By renaming the five positions in Fig. 23, which is inspired by the individual learning and research situation, a
final illustration will now show how teaching entire classes can be set up. At the same time, methodological
references emerge that are typical of Dialogic Learning. At the beginning, there is not simply a question in its
question form, but a provocation that induces the student to act on the factual level by means of an assignment.
We call this the core idea. Through this core idea, the question is presented in a compact, attractive, and perhaps
even provocative manner. The core idea is the guideline for preparing an assignment directed at all “I's” in the
class. To make it possible to handle an entire class with all its heterogeneity, students are instructed to record
the steps they take in tackling the assignment (learning journal or “travel diary”). These are the students’ tenta-
tive “solutions” that are read by aYou. Frequently this will be the teacher, but it is also entirely conceivable that
other students might take a look at it beforehand and comment on the work others have done in their journals
(by leaving the journals and changing places with others ) 22 vol-1, p. 39 A decisive factor for Dialogic Learning is
that the You provides (brief) feedback and thus acknowledges the students’ core ideas that were actually effec-
tive in handling the assignment. It is perfectly possible for the students’ core ideas to differ from that originally
stated by the teacher. Further lessons receive new impetus from a suitable selection of the ideas found in the
students’ notes and a discussion of these ideas in the entire class. In Dialogic Learning, the norms that ultimately
have to be learned in the subject concerned are hinted at rather than spelled out: they correspond to the We
position, i.e. the target (crossing) between an | and aYou at the end of the exchange.
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2.3.2 Working with I -You - We as a teaching aid

The outline of the above theory and the numerous speci-
fications involved in Dialogic Learning may put off
teachers and make them think that superhuman
powers are needed to meet all these require-
ments “. For this reason | would like to use
an example to provide suggestions for
putting Dialogic Learning into practice
with the help of the textbook "l —You —
We" as a teaching aid and try to show
thatsignificant results can be achieved

even with very small steps “*. The

first contact with multiplication is
involved here and we follow the
stages in the cycle shown in Fig. 24.

2.3.2.1 Coreidea

A rather broad definition of the core idea
states that “"Core ideas have to be phrased
in such a way that they arouse questions in
the singular world of the student, which in turn

direct attention to a certain subject area of the
lesson.”*7:P-37 The crucial element of a core idea is thus

its effect on the student; it triggers productivity. In this func-
tion, therefore, a verbal form of a “core idea” is, strictly speaking, initially just a “candidate for a core idea” since
its effect has yet to manifest itself in a specific lesson. Consequently, core ideas cannot be designated as such
until later and then only in relation to a certain unique group of students. In addition to this, however, there are
core ideas of teachers that have already demonstrated their effectiveness based on the particular biography
and genesis of knowledge among the persons involved. And a large number of such core ideas — the core ideas
of the authors and their acquaintances — are incorporated into the textbook "I —You — We" and expressed both
in the main text and in the titles of the chapters and assignments. All of them relate to the official syllabus in
the subjects German and mathematics and are intended to stimulate the students to grapple independently
with the problem at hand via the assignments. In this way, it becomes clear what didactic role the puzzles that
| employed to challenge others played: with a puzzle there is justified hope that it will act like a core idea and
set a productive process in motion in the person confronted with the puzzle. Since it is not possible, however, to
compress an entire syllabus into puzzles, core ideas have to take over this role.

An example that can be used in this context is the introduction of multiplication of natural numbers in the first
years of school. Two core ideas are offered for this in " —You — We” 1 2 3 21, P- 62ff The first one states: “Inner
images help you to group a large number of similar objects clearly without having to touch them.” The second
one is: "When you put on the multiplication glasses, you see multiplication calculations all around you.” It is
highly unlikely that any core idea candidate will unfold its effect in school in this abstract form. For this reason,
core ideas have to be transformed into specific assignments given to the students as mandatory tasks.

* A detailed description of the approaches to a dialogic structure of classroom teaching can be found in my contribution in*.
** Another detailed example from a 6th grade class (6. Primarklasse) of Patrick Kolb in Steinhausen can be found in my contribution
on the rule of three in .
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2.3.2.2 Assignment

The teaching aid always makes an initial suggestion for an assignment that is divided into several stages and
becomes increasingly complex. Practice has shown that it is advantageous to hand out only part of the assign-
ment at a time, either as a copy or by dictating it, so it is noted in the journal (diary) immediately prior to being
worked on by the school children. This makes reading easier, particularly at a later stage and for third parties.
The first part of the assignment “*Multiplication glasses” is: “Imagine that you are wearing multiplication glasses
and look around a bit in your environment. Do you discover things that are arranged nicely in groups of twos,
threes, fours or fives? Make a note of them in your diary and write an appropriate multiplication calculation for
them.” By making cardboard “multiplication glasses” with two round, empty holes for each child, the teacher
creates an amusing way of giving the glasses a concrete function and thus makes it easier for the schoolchildren
to fully dedicate themselves to the task at hand.

2.3.2.3 Journal

The journal excerpts shown in the textbook are intended to encourage teachers and students to try a similar
approach. We weren't able to predict this reliably, but surprisingly it doesn’t cross the children’s mind at all to
copy these illustrations. They are evidently designed so personally that a natural inhibition keeps the pupils from
copying them. The following example (Fig. 25) of eight-year-old Joana, which took place recently in a normal
classin Zirich-Nord at the end of the first year in primary school, shows at a glance, despite the few words used,
that Joana has already understood the nature of multiplications. Thanks to these clues, you can, so to speak,
look into the child’s mind! A decisive element is the fact that the teacher has the courage to expect something
from the children and doesn’t think she has to spell out everything herself in advance by handing out restric-
tive worksheets, for instance. The children in this class work using sketch pads, which additionally support the
freedom of the individual product through their own lack of structure.

] LR

aly”
i
- ¥ -
=0 | il j4- 44 51
P S— T = d . L S
e o e e g | r el
- —— ] = T
i — .ll ]
- el v} %
e} Bl L -] &
1 L L] 1] 1 L
1

2.3.2.4 Feedback

Joanais justifiably proud of the fact that her teacher distributes her mature work in the learning journal and talks
about it during a lesson. This acts as an incentive and creates a situation in which, sooner or later, even weaker
students show above-average achievement relative to their standard so that their work can be discussed and
appreciated within their class. However, this is only one aspect that plays a role in going through the students’
work again in class. Besides that, there is always an educational aspect that is decisive for the continuation of
the lesson. In all the students’ works, there are one or more core ideas that can be extracted by the teacher and
turned into a new assignment. As a result, the role of the first core idea given by the teacher or the textbook
fades into insignificance. Furthermore, preparation for the following lesson can be carried out in the course of
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looking through the students’ works. Core ideas in Joana’s work may include: "It is useful not to state the result
of the multiplication calculation right away” or “Pictures without calculations or with a mistake may give rise to
anew puzzle”. New assignments could be formed on this basis and then be given to everyone in the entire class.
This means, however, leaving the line of approach of the textbook for a moment, which is precisely the charac-
teristic feature of Dialogic Learning. This kind of classroom teaching cannot be planned in detail, it develops
from the contributions of the students. At the same time, the inherent problem of heterogeneity is tackled via
this approach, because all children in the class repeatedly receive the same assignments, which they work on
individually, albeit at varying depths and levels of intensity. Nevertheless, an exchange within a class is possible,
the children can help one another and discuss things so that individualization does not lead to isolation. Instead,
it leads to social learning within subject lessons.

2.3.2.5 Norms

A question that repeatedly arises is whether the specified teaching goals, norms, and competencies can be
achieved through Dialogic Learning. Specifically, a question frequently asked is whether subject-related topics
can also be practiced and tested. To the extent that the work in the learning journals is not in itself practice
enough — Joana has already practiced several multiplication calculations — preparing for a test can itself be
transformed into an assignment. The somewhat superficial, though often very effective core idea behind this is:
“l want to get a good grade.” Accordingly, the teacher can give each child the assignment of inventing a problem
that is as difficult as possible but nonetheless manageable and interesting at the current class level. And before
you know it, the teacher is in possession of more than twenty problems that exert a very particular attraction for
the students, in contrast to copies of predefined tasks. The authors are known, and the students are not even
certain whether all problems are well-defined and solvable. Interesting subject-related discussions among the
students are inevitable. Fig. 26 shows an example from my own teaching at the Kantonsschule Zircher Ober-
land in Wetzikon, Switzerland.

In summary, we can state that it is possible to transform traditional classroom teaching into dialogic learning by
means of three simple measures:

1. Believe in your students, and do not inundate them with prepared material.

2. Teach students to produce their own individual ideas on a central topic of the lesson.

3. Look through all journals of the students, select useful material, and only then
continue with the next lesson.
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Exercises relating to the distributive law, Ulb, 1 November 1988

1. Factor out: gcdbaef + hjkmci— ogsrcnp + zyxcwtuv

Calculate as elegantly as possible:
2. 9738659667 * 9738659967 — 9738659567 » 9738659667 + 9738659667 — 9738659467 + 973865966

9738659267 - 9738659967 » 9738659667 Clavdio
3. Multiply out: (a—b) ®(a—b) e (a+b)
4. Factorout:a>+aeaeb—aebea—aebeb+beaca+beacb-bebea-0t’
5 Multiply out: (f+x) ® (u—w) Anatina
6. Depict in a drawing (49 ° 5), with different colors as far as possible
Christian
7. Write as simply as possible: 7a’— (3a? — a)
8. Factor out and write as simply as possible: > ® a—b + ¢  2c + b * ¢?
Martina
9. Calculate in the simplest possible way: 243378 © 243379 — 243377 ® 243378
10 Which number has to be inserted for the placeholder so that the
' number pairs have the same quotient? (x*,x%), (49%,x%) Sara
11. Factor out the biggest possible factor: 4° + 4 + 4° Sandra
12. Calculate as simply as possible: 189357389562 » 189359389562 — 189358389562 » 189357389562
13. Calculate (a: (m +n))(m +n)
14. Caiculate simply 24 © 89 + 53 ¢ 11936 © 24— 43 ¢ 53 Kaspar
15. Factor out: adam + eve — apple
16. Factor out: abcdefgh + bedefghik — deghiklm
17. Multiply out: (a—=b+c)e(d+e)e(f-g—h+1) Claudius
18. 30003 100 * 29997 : 25 : 4
Renate
19. 1798517985 1398 — 1397 » 17985
20. Multiply out: (a+b—c) e (a-b-c) Christof
21. Multiply out: (a® e a’ e a’—af) e (27 + 65 ¢ 9°—r’) e (V' + v’ —v?eb) Sdmi
22. Factor out the biggest possible factor: 133 +u—95ev+38:wel171:x+76-ye1l4-z Oliver
23. Factorising is more difficult if the factor first has to be prepared separately: 95 ¢ p + 57  ¢° Daniel
24. Factorout: 279ea-31eaeb+93ea’ Bettina
25. Multiply out: (a—b) ® (c-d) Katharina
26. Factorout: 171 © 256 — 114 ¢ 8° Claudia
27. Factor out the biggest possible factor: 396 e x—18 e x e y + 66 * x* Yvonne
28. Factor out the biggest possible factor: x ¢ 189 +y ebe147—a—105+z*126 Mike
29. Factor out: 32 3?—9 Anja
30. The two number pairs have to have the same quotient: (x* 25%),(x*,625) Oli
31. Simplify as far as possible: z ® ((z* + 2°) : (22 + )
RG6bi
32. Factorout:zez+z:z-z
33 Calculate with the distributive law in the simplest possible way.
’ A calculator with 8 digits is available: 45626809112100 « 111125709813245 Nadine
34, Factorout: (@’ ® b)> —a’ * b? Philipp
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3 IBME and ICT

3.1 The use of dynamic geometry systems (DGS) and
computer algebra systems (CAS) in IBME

Pavel Pech

Abstract

Dynamic geometry and computer algebra systems have dramatically changed the way we teach mathematics.
One main goal in teaching mathematics is problem solving, for which computers offer great potential. To solve a
problem students first visualize it with DGS then by changing parameters the problem is interactively modified
and geometry properties like invariant points, lines, circles etc. are recognized. Using this knowledge a conjec-
ture is stated and classically proved or disproved. But sometimes there is no key idea available to find a proof (or
the locus). The use of CAS can help in such cases. We are able to prove many such theorems using automated
geometry theorem proving. This is one example of how DGS and CAS contribute to inquiry based mathematics
education (IBME).

3.1.1 Introduction

In basic university-level geometry courses at the university we use both classical methods and new techno-
logies, which contemporary mathematical software offers. To solve a problem we usually start with DGS to
demonstrate a geometric situation. Dynamic features of this software allow us to state and consequently verify
conjectures. This means that the conjecture is (numerically) verified in an infinite number of situations, and with
a high probability we can say whether the conjecture holds or not. But numerical verification is not infallible.
Therefore, rigorous mathematical proof is needed. To prove a statement we use a classical proof, if possible.
We show new methods of proving, deriving and discovering geometric theorems including searching for loci
of points. We demonstrate this using a few examples from elementary geometry with a focus on inquiry based
teaching mathematics.

3.1.2 Verification and proving theorems

Proofs in mathematics are among the most difficult parts of school curricula all over the world. Even university
students have trouble with them in spite of their importance. We can use new technologies to facilitate the
methods for proving theorems in schools. We describe two proof categories that can be done by computer —
verification in DGS and automated (computer) proving.
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3.1.2.1 Verification in DGS

The basic steps of verification in DGS are as follows:

= Students verify a given statement in several concrete situations,

e.g. with a ruler and compass; this is the classical approach.
= DGS enables students to verify a statement in an infinite number of situations.
= If a statement is valid by dragging all possible free parameters,

then the statement is true with very high probability.

This gives students confidence that the fact is indeed true and what we need is a logical proof. We must realize
that verification is not a proof since it is based on numerical computation.

Nevertheless, verification in DGS is an important tool even for experts since we can use it to state conjectures. In
elementary schools, verification in DGS can replace the exact mathematical proof and help motivate students.

3.1.2.2 Automated proving

Automated proving of a statement can be done on computer using CAS. Basic steps of automated proving are
as follows 1 3:

= Introduction of a coordinate system.

= Algebraic formulation of a problem.

= Proof of a statement in an algebraic form.

= Searching for additional conditions, if necessary.

Human intervention is often needed. Most problems that can be proved classically can be proved automatically
as well. With a computer we can prove problems that are difficult or even impossible to prove using a classical
approach, e.g. to execute non-Euclidean constructions.

The first computer proof was used to solve the four colours problem:

Are four colours enough to colour any planar map?
OnJune 21,1976, Appel, Haken and Koch solved it with three IBM computers in 1,200 hours of computer time —
this was the advent of computer proving. It was necessary to overcome psychological barriers; computer proofs
cannot be verified by hand.
We frequently hear from students “Are proofs necessary?” Students often think that proofs are useless. They say

that it suffices to verify a statement for several cases. As teachers we should show them that such a method can
fail. See the next example:

Ancient Chinese prime number test:

Natural number n > 2 s prime < n | 2r-1-1).
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Let us try to verify it:
3 isprime < 3| (23°1-1), true,
4 isnotprime & 4 ) (24°1-1), true,
5 isprime < 5| (2°°1-1), true,
6 isnot prime < 6} (261 -1), true,
7 isprime & 7| (27-1-1), true,
8 isnot prime < 8} (28-1-1), true,
9 isnot prime < 9} (2°-1-1), true,

In spite of this, the statement does not hold!

Namely, for n = 341, which is a compound number since with 341 = 11 - 31, we get 341 | (23 —1).

There are other such numbers 561, 645, 1105, 1387, 1729, ... which are called 2-pseudoprimes.

Example 1:

Prove that three heights of a triangle are concurrent.

Verification in DGS: We must verify that three heights of a triangle are concurrent (Fig. 1).

Point D lies on
the height f

First we suppose that D is the intersection of
two heights — d and e. Second we must show
that D belongs to f.

In GeoGebra we construct two heights d and e
and denote their intersection by D. Then we
construct the third height f. We must verify
that D belongs to f. Moving interactively with
vertex C it seems that D belongs to the height
f- In the window “Relation between two
objects” we click on D and then on f and the
answer “point D lies on f” appears. It means
that for this individual situation the statement
is verified. When we move with vertex C then
the answer disappears and we use the window
“Relation between two objects” again to verify
the statement for another situation. To verify
the statement in an infinite number of situa-
tions, we use the text “point D lies on f and
write the condition for when the text appears.
This condition could be distance (D, f) = 0.
Then, moving with any vertex of a triangle,
point D still lies on height f.
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Automated (computer) proof: Denote A =[0,0], B=[1,0], C=[u,v], D =[p,q], (Fig. 2).

Now we will describe hypotheses and the conclu-

sion in an algebraic form. As
C=[u,v]

d:=(u-1)x+vy=0,
e:=ux+vy-u=0,
fi=x-u=0

then
Dednes (u-1)p+vg=0Aup+vqg-u=0.
We must show that

D=[p.q]

De f o p-u=0

A=[0,0] B=[1,0]

This is easy since the algebraic identity
p-u=-1-((u-1)p+vq)+1-(up+vq-u)

holds.

We expressed the conclusion polynomial p—u as a linear combination of polynomials defined in hypotheses
(u-1)p+vqg, up+vqg-u

with coefficients —1 and 1.The statement is proved.

In more complex examples the work of finding linear combination is done by computer.

Classical proof: We construct an auxiliary triangle A’, B’, C’, where A’B’|| AB, B’C’ || BC, C'A’|| CA, (Fig. 3).
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Then the heights d, e, f of ABC are side bisectors of A’B’C’. Now it is easy to show that three side bisectors of a
triangle are concurrent.

In summary, we showed three types of proofs

= Verification in DGS (which is not an exact proof),
= Automated (computer) proof,
= Classical proof.

If we ask students “What type of proof do you prefer?” and “What are the strengths and weaknesses of each
proof?”, they usually answer that they prefer verification and classical proof since in these cases they have a real
insight into the problem. But to prove a theorem classically you need a key idea. If there is no key idea, you can
try an automated proof.

Let us look at another example in the form of a geometric inequality.

Example 2: Weitzenbéck inequality 7
Let ABC be a triangle with side lengths a, b, ¢, and area P. Then

al+b?+c? 2 43P, (1)

where equality occurs if ABC is equilateral.

_ J

C We will show four types of proofs of the inequality (1)
— verification in DGS, automated proof, classical proof
and visualized proof, which sometimes can be done and
a=548 seems to be the best method.

a4+ b2+ 2 — 4v/3P =505

Verification in DGS: The statement is verified by means
of numerical computation of the value of the left side in
(1). By dragging the mouse we see that the values are
always non-negative (Fig. 4). From this we can suppose
that the inequality (1) holds. But be careful, sometimes
this method can fail because of numerical computations.

b=7.06
Area ABC = 16.93

A c=6.52 B

Automated proof: We must prove that
a?+b?+c2-43 P20.

We will describe the geometric situation in a rectangular
coordinate system.

Let A =[0,0], B =1[c,0], C=[u, v], (Fig. 5). A=[0,0] c B=[c,0]
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Then

a=|BC|= a?=(u-c)?+Vv?
b=|CA|=b*=u?+Vv?

P =area ofABC=>P=%cv.

We write the left side in terms of coordinates
a?+b2+c2—4\3P=(u-c)2+2v2+ut+c?-2Bcv

which can be expressed as sum of squares

(2) a2+b2+c2—4\/§P=2(U—§)2+2(V—¥
AE]
2

with equality if u=§ and v=-—=i.e. ABC isequilateral.

)220

Note: Here the decomposition (2) was done by hand. In more complex cases the decomposition can be found
by computer.

Classical proof: Classical proof of (1) is based on the inequality between arithmetic and geometric mean and
Cauchy-Schwartz inequality. First we rearrange (1) with the use of the formula of Heron into

al+b2+c2-4\3P 23(a+b+c)(—a+b+c)(a-b+c)(a+b-c).
Using the inequality between arithmetic and geometric mean we get
3(a+b+c)(—a+b+c)(a-b+c)(a+b-c) <3(a+b+c)(a+b+c)3/27.
or
a+b+c)(—a+b+c)(a-b+c)(a+b-c) < (a+b+c)*/9.
Then by Cauchy-Schwarz inequality we conclude the proof
(a+b+c)*/9=((a+b+c)?2/3)2 < (3(a?+b2+c?)/3)?=(a?+b2+c?)2
B
Visualized proof: Sometimes we are able to do a
visualized proof, which is the best method as we can
watch what is happening when we change parame- C

ters of an investigated geometric object (Fig. 6). We A
rearrange the inequality (1) into the form

a2+b2+c224\/§P:> azf + bzf + czf >3P
A

from which the inequality (1) follows. Realize that
for the area A of an equilateral triangle with the side
length a the formula A% = a?\3 /4 holds. The triangle
is divided into three differently coloured parts for a
better view.
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3.1.3 Deriving theorems

What is automated derivation of theorems? By automated derivation of theorems we mean finding geometric
formulas holding among prescribed geometric magnitudes, which follow from the given assumptions “. Deriva-
tion is based on the process of elimination of variables °.

Searching for loci of points of given properties is a part of derivation. Hundreds of theorems have been found
by this method.

Example 3:

Given a planar quadrilateral ABCD with side lengths a, b, ¢, d and diagonals e, f.
Find a relation that holds among a, b, c, d, e, f.

Adopt a coordinate system, where A =[0,0], B =[a,0], C =[u,v], D =[w,z], (Fig. 7). Then

D=[w,z]
c
C=[u,v]
b=|BC|=>h1:= (u-a)P+vi-b%=0,
d
f b c=|CD|:>h2:= (w-u)?+(z-v)2-c2=0,
e
d=|DA|:>h3:= w2+z2-d2=0,
e=|AC|:>h4:= ul+vi-e?=0,
A=[0,0] a B=[a,0]
£-1BD | = h, = w-af +2-f7=0,

Inthe ideal I=(h , h,, ..., h ) we eliminate variables v, v, w, z. In the freely distributed program CoCoA 8we
get

Use R::= Qla,b,c,d,e,f,u,v,w,z];

I:=Ideal ((u-a)"2+v"2-b"2, (w=u) "2+ (z-v) "2-c"2,w"2+2z"2-d"2,u"2+v"2-e"2,
(w=a) "24+z"2-£"2);

Elim(u..z,I);
the result

—a“c?+a?b?c?*-a?c*+a?*b?d?*-b“d*+a?*c*d*+b?*c?’d?*-b*d*—a?*b?e?+a’*c?e?+b*d?e?-c*d?*e? +
aZCZfZ_bZCZfZ_aZde2+bZdeZ+a2e2f2+b2e2f2+C2e2f2+dZerZ_eku_erlo:O

which is the desired relation.
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3.1.4 Locus equations

In this part we will search for loci of points of given properties. This topic belongs to difficult parts of geometry
curricula at all school levels. New tools and technologies greatly facilitate the handling of this problem. Explo-
ring loci we use both DGS and CAS. This is a valuable topic for students.

Searching for loci with students at the University of South Bohemia we keep the rules:

= First demonstrate the problem with DGS and construct some points of the searched locus.

= Try to guess the locus based on the previous step.

= Then use the icon Locus (Geogebra, Cabri,...) to verify the locus. Remember that this is not exact!
= Using CAS (Derive, CoCoA, Epsilon, Maple, Mathematica,...) derive the locus equation exactly.

Example 4:

Let ABC be a triangle with the given base AB and the vertex C on a line k.
Find the locus of the orthocentre G of ABC when C moves on the line k.

When € moveson k then G moves on a curve like in Fig. 8.

First students say that the curve is a parabola (Fig. 8). Second some students say after dragging the line k that
the curve is a hyperbola (Fig. 9). When | ask them for the reason why it is a parabola or hyperbola, they do not
know. A question arises — what is the solution?
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To find it, we derive the locus equation:
Place a coordinate system so that
A=[0,0],B=[1,0],C=[u,v], G= [P:q]
and let k be an arbitrary line with the
equation k:ax+by+c=0.

We translate the geometry situation
into the set of polynomial equations.

For the intersection G =[p,q] of heights
h, and h,_itholds:

Geh,,= h :p-u=0,

Geh, = h,:(u-1)p+vq=0.

Further

Cek= h :au+bv+c=0.

We get the system of three equations h, =0, h,=0, h =0 invariables u, v, p, g, a, b, ¢ . To find the locus of
G =[p,q] we eliminate variables v, v intheideal I=(h , h,, h,)and getarelationin p, g which depends on

a, b, c. We enter

Use R::=Q[a,b,c,u,v,p,ql;
I:=Ideal (autbv+c,p-u, (u-1)p+vqg) ;

Elim(u..v,I);

and get the equation
C(p,q):=bp*-apq-bp-cq=0

in variables p, g. We can
suppose that (a,b) # (0,0)
since in this case the line k is
not defined. Then C(p,q)=0
is the equation of a conic.

The cases k=h,, ,k=AC and k
= BC lead to singular conics that
consist of two intersecting lines
(they are not depicted).

C=[u,v]
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Considering regular conics we get two cases:

1. If k is parallel to AB, the locusis a parabola with the vertex [%, %] and a parameter
| 5| (Fig. 10).

2. If k is not parallel to AB we obtain a hyperbola centred at [-c/a, - b (a + 2c) /a?] with one asymp-
tote going through the intersection of AB and the line k, which is perpendicularto AB and the
second asymptote perpendicular to the line k (Fig. 11).

Note:

= The loci above were found using algebraic and computer tools.
= In this simple example the loci can be found by hand as well.
* What is missing? A classical geometric proof!

The next example shows an algebraic curve of the higher degree as a locus.

Example 5:

Let ABC be a triangle with the given side AB and the vertex Con a circle k centered at A and radius
| AB | . Find the locus of the orthocentre G of ABC when C moveson k.
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First we construct in DGS a triangle ABC with a point C onthe circle k.Using the window “Locus” we construct

the locus of the orthocenter G when C moves along k.

Derivation of the locus equation is as follows:

Suppose that A =1[0,0], B =[a,0],
C=[u,v] and G=1[p,q], (Fig. 12).

Then

Geh,,= h :p-u=0,

Geh, = h,:(u-a)p+vq=0,

Ge k= h :v*+v?-a’=0.

Elimination of v, v in the system
h =0, h,=0, h =0 givesinthe
freely distributed program Epsilon ?

with (epsilon);
U:=[p-u, (u-a) *ptv*g,u™2+v”*2-a~2]:

X:=[p,q,u,v]:

CharSet (U, X) ;

the polynomial which leads to

pi(p-a)+q?(p+a)=0

which is the equation of a cubic curve called strophoid 2 °. The equation of a strophoid can also be written in the

form of two functions

g=tp L.

This form enables us to investigate properties of a strophoid with the methods of calculus used in secondary

schools.

The strophoid, or more exactly the right strophoid, has many interesting properties. See the next example.
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Example 6:

Let A and B be fixed points and let S be a point on a perpendicular s to AB at A.
Determine the locus of the intersections G of the circle k centered at S
with radius |SA | and the line BS when S moves along the line s .

We derive the locus by eliminating suitable variables in a coordinate system (Fig. 13).

Place a coordinate system so that A =[0,0], B=[a,0], S=[0,s] and G =[p,q].Forthe intersection G =[p,q] of
the line BS and a circle k we get

Ge BS = h :sp+aq-as=0,
Ge k= h,:p*+(q-5s)*-s>=0.

Elimination of S inthe system h =0, h,=0 gives the locus equation of the point G. In Epsilon we enter

with (epsilon) ;
U:=[s*pta*g-a*s,p”2+(g-s)"2-s"2]:

X:=[p,qg,a,s]:

CharSet (U, X) ;

We get the same locus as in the previous case.
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3.1.5 Conclusions

The use of new mathematical software like dynamic geometry systems and computer algebra systems has
dramatically changed the way we teach mathematics. Using DGS students visualize problems, and by interacti-
vely changing parameters they formulate conjectures and verify them. With CAS they can even prove theorems
and discover new formulas. Computers extend the horizon of knowledge at school. For example, in the past
we studied lines and conics at school. In the future students will study curves of higher order. The examples
presented here show just how important computers are in IBME.

3.2 IBME and ICT - the experience in Bulgaria

Petar Kenderov, Evgenia Sendova, Toni Chehlarova

3.2.1 Digital learning environments in support of the IBME

The potential of the digital learning environments for supporting a relationship among teachers and students
as members of a research team in which the teacher acts as a discovery-guide has been identified as crucial
by the members of the Bulgarian Fibonacci team 1% 11, The participants in the inquiry-based learning process
are expected to observe a specific phenomenon, to formulate a conjecture based on these observations, to
check and verify this conjecture experimentally. Such a style enables the students (and their teachers alike) to
experience the flavor of the real mathematics as a field of new discoveries. Even if they happen to re-discover
America, they would enjoy the process of sailing to it, and would enhance their creative thinking *2. They would
learn to try and compare various strategies for attacking a problem and would understand that in mathematics
the road to a goal is often more important than the goal itself. Which method to choose, how to apply it, which
parts to neglect are aspects not covered by any method, thus mathematics should be experienced not just as a
science but as art as well!

The explorations in a dynamic digital environment allow the students to decide what is invariant or crucial
in a specific construction, what could be neglected, rejected or modified. Furthermore, they could formulate
their own problems by implementing similar ideas in a context of their own interest. Last but not least, they
could become co-authors of the toolkit of a specific dynamic computer environment by enriching it with tools
constructed by themselves.

While developing the dynamic resources in support of the IBME, the Bulgarian Fibonacci team tried to inter-
weave all these ideas — a challenging task in view of the relatively conservative mathematics curriculum and
methods of evaluation. But the task was worth attacking since based on previous experience (see also 4.5.1 in
this book) we knew that the learning process could be made enjoyable and natural for the students if they were
provided with appropriate dynamic environments functioning as mathematical laboratories.

Let us formulate in a nut shell the basic principles behind the development of resources published as dynamic
scenarios on the Bulgarian Fibonacci site 3. These resources have been carefully designed to provide opportu-
nities for

= the teachers to work as research partners of their students;

= the students to find their own learning paths according to their interests and potential;

= all users to build the knowledge in a cross-disciplinary context (especially integrating mathematics with
ICT, natural science and art).
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3.2.2 Basic types of dynamic learning environments

Various types of environments and models have been used for the development of these resources. Below we
consider three basic types with representative examples from the resources in 13:

= Ready-made computer applications
= Modifiable applications
* Programming-based exploratory environments

3.2.2.1 Ready-made computer applications

In a model for comparing common
fractions * the students can vary the
numerator and the denominator of
each of the two fractions by means
of sliders (Fig. 14) as well as to move
the figures depicting them. Thus,
if necessary the figures could be
imposed one over the other letting
the students figure out the rule for
comparing two fractions with equal
denominators.

N ——

This application is also suitable for organizing the explorations in search of rational methods for comparing
(ordering) fractions of the kind

.6.7.99 .200

5
"5'6'7'8' 100" 201

4.
5

Hlw

The ready-made learning environments
are very suitable not only for younger
students. For instance, a dynamic trigo-
nometer (Fig. 15) is used in the upper
secondary school for the students to
observe phenomena and relations due to

the change of the angle. (ETTE N

SO TR T

3.2.2.2 Modifiable applications

The option of modifying a specific computer application so as to solve a class of similar problems is another
important feature of the learning environments we take into consideration.

In addition, the modification could concern the content of the available tools.

If the students are not very familiar with the environment (GeoGebra in this case) they might be distracted by
the variety of available tools. To avoid this problem we would leave just the buttons needed for solving a specific
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set of problems. The option for hiding part of the buttons is particularly appropriate when working on the topic
Elementary and Basic Constructions in Geometry *°.

We leave a subset of the original toolbar, viz. all the buttons necessary for the ruler-and-compass elementary

constructions simulating the work with an idealized ruler, i.e. one assumed to be infinite in length and with no
markings on it (Fig. 16).

DESNEEECEEND

After solving some basic construction problems the students create all the buttons corresponding to the ruler-
and-compass elementary constructions. Thus they feel as co-authors of the toolbar offered originally by the
developers of the environment.

Such an approach is a very important aspect of the constructionism — an educational philosophy in which the
students become constructors of their own knowledge and make their products a public entity *©.

Another type of the modifiable learning environments are the so-called half-baked computer applications *.

An example from our resources is the setting for the construction of a triangle by two sides and the angle
between them (SAS) — the half-baked environment comprises the construction of two segments with a
common point and an angle formed by two rays (Fig. 17).

xlAzlZIolzl s s Jled

In the cases of more complex

-
= problems (including reality-based
™ ones) it is a good idea to create
dynamic models at different
— " levels. Let us consider for example

... the problem of folding a rectangular napkin so that:

= the monogram is placed on a side of the rectangle not containing it
= the piece being folded is entirely on the remaining part and has a minimal area.
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Two dynamic models (Fig. 18) are proposed in 18,

Area DEMF = 7.7

The students can explore rectangles of various size, and re-formulate the problem as a problem to be proven
(even without knowing calculus).

Talking about modification, let us note at this point that a new, crucial aspect of the inquiry based mathematics
education is the re-formulation of the problems. The standard phrase “Prove that...” in the classical formulation
of problems is often replaced by “Find a relationship/pattern...”, "Determine the type of...”, “Formulate as many
conjectures as you can about...”

We present in the table below the classical formulations of some well known geometric problems together with
new formulations in exploratory style 1°:

The classical formulation An exploration-enhancing formulation

The segments AC and BD are diameters of a circle.

Prove that ABCD is a rectangle. ‘ What is the type of the quadrilateral ABCD ?

The diagonals AC and BD of a square meet at a point O. The points M and N are midpoints of the segments DO and BO.

Prove that AMCN is a square. What properties of the quadrilateral AMCN have you noticed?

Let CL be the angular bisector of the right angle of the triangle ABC,
and M and N be the feet of the perpendiculars from the point L to the legs.

Prove that LMCN is a square. ‘ What can you say about the quadrilateral LMCN?

Two perpendicular lines are passing through the centre of a square.

Prove that the quadrilateral with vertices the intersection points| Determine the type of the quadrilateral with vertices the inter-
of the two lines with the sides of the square is also a square. section points of the two lines with the sides of the square.

CM is a median of A ABC. The segment MN = MC is on the median’s extension.

What is the type of the quadrilateral ANCB if:
a) AABC is arbitrary; b) £ C=90°

c) AC=BC;d) AABC equilateral?

When is ANCB a square?

Prove that ANCB is a parallelogram.

Based on their own explorations the students first formulate conjectures which afterwards they are motivated
to prove.
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Modifying (in the sense of editing) a specific file (procedure, protocol) according to a given goal is another crucial
element of the teacher preparation. Such skills should become natural not only for the teachers but also for
their students and the preparation of an appropriate ground is based on creative integration of knowledge from
various fields. The process of editing is specific for each digital environment, but in every single one we could
talk about its axioms and language, and the editing could be considered as a specific mathematics application.
While “clicking and dragging” could also be considered as a specific kind of a language, having the procedure
of the user’s mathematics activities described in the form of a sequence of text commands is very convenient
for debugging, editing and modifying. Out of all possible methods for creating educational software, to use a
programming language is perhaps the richest one in terms of functionality 20,

3.2.2.3 Programming-based exploratory environments

A notable example for this is Geomland 21 22, Initially it has been developed as a standalone Logo implementa-
tion with a focus on plane geometry. The Geomland language contains tools for working with geometric objects
such as points, segments, lines, circles, vectors and sets of such objects. Each object is characterized by a name,
avalue, animage, and its relationships to other objects. (The experience with this environment is considered in
more details in 4.5.1).

The new version of Geomland has been re-implemented as a library in Elica 3. Geomland is used as a core deve-
lopment language for the scenario Reflecting on the reflection 2%, based on 2°. It describes a programmable and
constructive approach for explorations of the geometric transformation reflection starting with the simplest
case (a reflection of a point with respect to a line) and modifying the corresponding procedure consecutively to
the most general one (reflection of a set of objects with respect to a point or a line ). The end is a virtual simu-
lation of a game based on reflections.

Reflecting on the reflection — a fragment of the scenario

After warming up with the basic instructions of the Geomland language the first task on reflection is to teach the
computer to reflect.

Task:
Construct the reflection P1 of a given point P with respect to a given line L.
The commands are close to the geometrical constructions | 33 ol =1 |
described in a natural language and preceded below by =
semicolons:

object "Ll line :P 90+heading :L | i
;construct an object which is a line 2

;L1 through point P and -
;perpendicular to L -
object "O isec :L :Ll1 |
;construct an object which is the |
;intersecting point (0) of the

;two lines

object "R ray :P :0

object "Pl pointon :R 2*distance :P :0

;construct an object Pl which is a point on the ray R from P to O
;at a distance twice the distance from P to O.
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To teach the computer to find the reflection point of any point with respect to any line is done by means of the
following procedure (the command ob is short for object):

to reflect pl :P :L

local "L1 "O "R

ob "L1 line :P 90+heading :L

ob "O isec :L :L1

ob "R ray :P :0

output pointon :R 2*distance :P :0
end

The further tasks deal with defining procedures for reflecting a segment, a circle, a ray with respect to a given
line L, which could be then integrated in the following one-line procedure:

to reflect 1 :0 :L
output run sentence (word "reflect first :0.type "1) [:0 :L]
end

Thus, if the type of the first input of the reflect 1 procedure (the object O) is point, the command to be
executed will be

| reflect pl :0 :L
Finally the students are given the task to generalize their procedures so that the first input could be a set of any

number of points, lines, rays, segments and circles, and the second input could be a point or a line. Now the
following task becomes easy to attack:

Gask: )

Create a picture of the kind shown below (Fig. 20) and its reflection with respect to a point. Have you ever seen
such type of reflection? Do you know any physical phenomenons based on it? And any biological?

2 EitlE

N | y,

Hint: Search for more information about the lens and the human eye.

The scenario ends with the simulation of a children’s game and its implementation in Geomland as described
below (Fig. 21).
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Let us note that defining new geometric notions and then generalizing them is done by means of a language
close to the traditional plane geometry language. An essential property of the objects of Geomland is that the
learner is armed with the opportunity to move among different definitions of the same notion based either on
different geometric constructions or on different language descriptions of the same geometric construction.
The necessity of giving precise definitions becomes vital since their validity can easily be checked when they are
executed.

Since the mathematical activity is preserved as a procedure of instructions the teachers and learners alike can
compare different strategies and solutions, and cultivate an awareness that their work can be developed, modi-
fied, improved.

Historically direct manipulations interfaces and interactive programming environments have often been viewed
as antipodal. New developments are breaking down the antithesis between programmability and direct mani-
pulations, and point towards new systems which exploit the strength of both 2.

Here is an example of how programming could be harnessed in the context of GeoGebra for constricting various
configurations of Russian dolls and photo-pictures by means of the Sequence command (Fig. 22).
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3.2.3 Discussion

The resources developed by the Fibonacci team are being evaluated by the teachers by testing them in a class
setting. The feedback of the teachers is then reflected by the authors thus making the resources “*dynamic” in
multiple aspects. Furthermore, the teachers modify the team resources or create themselves modules fitting
their current pedagogical tasks. After evaluating teachers’ developments we publish them on the project site
under the heading Learning Environments Contributed by Teachers.

Let us emphasize, that the development of resources making use of dynamic constructions is just an element
of the IBME. The discoveries, the representations and the implementation of mathematical objects and ideas
could be related to the enhancement of the creative potential of learners by providing appropriate overall condi-
tions and our on-going efforts are in this direction.

We are optimists that the assessment and evaluation mechanisms will reach the level of recognizing the
achievements of learners who are able to approach learning as a task of discovering rather than “learning about”,
the reward being the discovery itself ”. Till then we, in our role of teachers’ educators, have to do our best to be
that type of learners ourselves.

3.2.4 Atthe end - some questions for reflection

4 A

= How to select and combine various environments in support of the IBME — manipulatives, text
resources and digital learning environments?

= How fixed the compulsory curriculum should be now that thanks to the dynamic computer environ-
ments various new topics could be introduced revealing the real nature of mathematics as a science?

= Should the dynamic constructions be accompanied with texts (if yes, what kind of texts)?

= Should we develop dynamic environments supplementary to the current textbooks or independent
digital textbooks instead?

= How to carry into effect a change in the evaluation system so that it could take into account the level
of the acquirement of skills for doing research, for problem solving, for problem posing, for applying
mathematics knowledge in real-life situations?

= How to stimulate teachers to organize and maintain the out-of-class work?

= How best to use the modern ICT for the formation and maintenance of communities sharing
problems and achievements in the field of mathematics education?

N J

And it might be worth reminding that the most knotty questions should be answered before being asked ...

3.3 Interactive geometry for the web
and mobile devices

Matthias Ehnmann, Michael Gerhauser,
Carsten Miller, Heiko Vogel, Alfred Wassermann

3.3.1 Introduction

Using computer technology in mathematics education has been a very active research area at least since the
availability of the personal computer in the 1980’s, see e.g. 3% 35
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Arguably, for many years one of the biggest obstacles for the integration of computer technology in mathema-
tics education has been the necessity of a computer laboratory. Usually, the class has to stay the whole lesson in
the laboratory and not in classroom. But most computer laboratories are filled with big computer screens, the
tables are covered by the keyboards. Regular paper-and-pencil work is limited in such an environment. This may
have been one of the reasons why many teachers restricted the use of computer technology to presentations of
dynamic content in front of the class.

With the presentation of the Apple iPhone in 2007 and the Apple iPad in 2010, followed by a plethora of mobile
devices with constantly dropping prices, the situation changed entirely. This new generation of mobile devices
is well suited for the classroom. Envisioned already 40 years ago by Alan Kay, one of the pioneers for proposing
computers in education 36, with an astonishing precision, tablets are now available for everyone. In contrast to
usage of desktop computers in a computer laboratory, working with tablets blends well with paper-and-pencil
work. There is no need anymore to leave the classroom in order to use a computer.

“Because mobile technology ... [are] is becoming more and more relevant for mathematics education” 2°. This
movement is amplified by the efforts of several countries to replace printed textbooks by electronic ones. Among
the countries which plan to switch to electronic material are Slovenia, South Korea, and the United States 3’. As
a consequence for the future, educational software will have to blend well with electronic textbooks.

But the availability of these handheld devices provokes new challenges for interactive mathematics visua-
lization software “?. Today’s dynamic mathematics software is expected to be usable on desktop computers as
well as on mobile devices. Software developers therefore have not much choice but to use a platform indepen-
dent design. At the time of writing the only software standard which is able to run on desktop computers and
simultaneously on the vast variety of mobile platforms is the HTML 5 quasi-standard. This is the common deno-
minator for software which is available on Android, iOS and desktop systems (Windows, Mac OS X and Linux).

An advantage of using HTMLS5 is that ebooks are based essentially on the same technology. For example, the
ebook file format standard epub3 “? is based on large parts of HTML5. Many HTMLS5 applications can therefore
be included in ebooks and enable a previously unknown interactive reading experience. That means the border-
line between software and ebook does not any longer exist.

3.3.1.12 Natural user interface

In the very early days of the computer usage in school it was common to use the command line interface (CLI) to
interact with the computer. Examples are computer algebra systems and programming languages like LOGO.
To be able to use the software, the user had to know the commands to control the software.

Then, for many years the interaction happened with a graphical user interface (GUI). Now, the students used
menus and buttons to control the software. The commands no longer had to be memorized.

The new generation of mobile devices is controlled by finger moves or with a stylus. Gradually we are shifting
into the age of natural user interfaces.

“Natural user interfaces (NUIs) are the third generation of user interfaces for computers, after command line
interfaces and graphical user interfaces. A NUI uses natural elements or natural interactions (such as voice or
gestures) to control a computer program. Being natural means that the user interface is built upon something
that most people are already familiar with. Thus, the learning curve can be significantly shortened. This ease of
use allows computer scientists to build more complicated but richer user interfaces that simulate the existing
ways people interact with the real world.” See “% %3, but also 38 for a controversial point of view.

Being forced to develop new software for mobile devices can be taken as chance to rethink the way of inter-

action and start to go in the direction of a natural user interface. With the project sketchometry we present our
first humble experiences with NUI.
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3.3.1.2 Outline

This section gives an overview of three software projects developed by the authors. JSXGraph #3, JessieCode *°
and sketchometry °* are all based on HTMLS5 technology and therefore can be used on practically all mobile
computers as well as on desktop computers.

Sketchometry is a dynamic geometry system (DGS) aimed to be used by the students in classroom. It has a
radically new interface which is the first step toward a natural user interface.

JSXGraph is a software library for dynamic mathematics. Its user group consists of software developers, deve-
lopers of mathematics visualizations and authors of ebooks.

While JSXGraph offers the full power and flexibility of a software library, the third project, JessieCode, is a middle
layer. It allows to use a mathematically oriented language to create constructions. Additionally, it provides the
necessary security measures to be used as a communication language for mathematics in public web forums or
wikis.

3.3.2 JSXGraph

JSXGraph 3% 32 is a cross-browser library completely written in JavaScript, which enables function plotting,
data visualization and interactive geometry on a web page. First presented in 2008 3, it is now included in more
and more projects “.

JSXGraph provides a mighty and extensive application programming interface (API) consisting of several
hundred classes and methods .

3.3.2.12 A smallinside into the practical use of JSXGraph in a web page

To implement JSXGraph in the web page you usually start with a <div> element, which should contain decla-
rations for width and height.

|<div id='box' class='jxgbox' style='width:600px;height:600px;'></div>
The JSXGraph code is linked to this element by using its id, i.e. in our example the id ‘box’. With the property
boundingbox:[x1,y1,x2,y2] it is possible to specify a coordinate system. The upper left corner of the box will
have coordinates (x1,y1), the lower right corner will have coordinates (x2,y2).
<script type='text/javascript'>
var board = JXG.JSXGraph.initBoard('box', {boundingbox:[-1.5,2, 1.5,-111});
</script>
There is no restriction to the number of JSXGraph boards in a web page. After initializing the JavaScript object
board it is ready for the construction of geometric elements. The generic call to create a new geometric object
has the following form:
|board.create('type', [parent elements], {optional properties});
Possible types are point, line, circle, polygon, functiongraph, to name a few. For example, the call of

|var A = board.create('point', [1,0]);

will create a free point initially at (1,0) which can be dragged around. While dragging an element, all elements
of the board are constantly updated.
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If there is an additional point

|var B = board.create('point', [-1,-11);
we can create a line through these points by

| var s = board.create('line', [A,B]);

Function graphs can be specified either as a JavaScript function or as a string containing the usual mathematical
syntax.

var fl board.create ('functiongraph', [function(x) {return x*x;}1);
var f2 = board.create('functiongraph', ["cos(x)"]);

A comprehensive documentation describing all available elements and all possible properties is available at the
JSXGraph website #7. In addition the JSXGraph wiki “® contains many examples.

If one wants to avoid construction by programming JavaScript code, D. Drakulic has developed a user interface
running in the web browser which exports the JSXGraph code “°.

JSXGraph constructions canalsobeincludedinebooks based onthe fileformatepub33?. Togetherwith MathJax>2
for typesetting of mathematical formulae this paves the road to truly interactive mathematical e-textbooks.

3.3.2.2 Example: Euler line of a triangle

We close this section with an elaborated example how to use JSXGraph in a web page. It contains the well-
known Euler line of a triangle (Fig. 23).

e _ )

Euler showed in 1765 that in any triangle, the
orthocentre, circumcentre, and centroid are
collinear.

N\ J

First of all, in order to use JSXGraph, the JavaScript library has to be included into the HTML file. Further, it is
advised to include a small CSS file jsxgraph.css.
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The HTML <head>

<html>
<head>
<title>Euler line with JSXGraph</title>
<link rel="stylesheet" type="text/css"
href="http://jsxgraph.uni-bayreuth.de/distrib/jsxgraph.css" />
<script type="text/javascript"

src="http://jsxgraph.uni-bayreuth.de/latest/jsxgraphcore.js"></script>
</head>

Using an HTML element of JSXGraph

In the body part of the HTML one empty HTML object has to be reserved for JSXGraph.

<body>

<div id="box euler line" class='jxgbox' style='width:600px;
height:600px; '></div>

<script type='text/javascript'>
var board = JXG.JSXGraph.initBoard('box euler line', {
boundingbox: [-1.5, 2, 1.5, -1], keepaspectratio:true
1)
</script>
</body>

Creating geometric elements

Now we can use our board object to construct new elements via board.create() commands. The available
geometric elements are documented at the JSXGraph website “’. For example the triangle for which the Euler
line is constructed is created by the following commands.

// Triangle ABC

var A = board.create('point', [1, 01),
B = board.create('point', [-1, 01),
C = board.create('point', [0.2, 1.5]),
pol = board.create('polygon', [A,B,C], {

fillColor: '"#FFFFO0O',
borders: {
strokeWidth: 2,
strokeColor: '#009256"

|

The complete example “Euler line” including the source code is available at http://jsxgraph.uni-bayreuth.de/
wiki/index.php/Euler_line_source_code.
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3.3.3 JessieCode

JessieCode is a scripting language developed to describe JSXGraph constructions. It uses datatypes and a syntax
very similar to JavaScript and integrates the JSXGraph APl in the language.

The intended use is in environments where JavaScript poses a security risk in the form of Cross Site Scripting
(XSS) attacks, e.g. a website with user contributed content like a discussion board or a wiki. To allow advanced
constructions some kind of scripting is required. There are approaches that deal with the issue by securing the
host site from third party content 33, but a solution that is easier to set up and maintain is preferable.

The language uses the JavaScript datatypes number, string, object, function, and null. Functions can be defined
by function expressions only.

f = function (x) {
return x*3;

Element creators

Creating elements in JSXGraph always involves the board.create() method. The first parameter of this method
is the type of element we want to create, the second parameter is an array of parent elements, like coordinates
for a point, or points for a line or a function for a plot. The third parameter describes the visual appearance of
that element, e.g. colors and visibility.

In JessieCode for every element type there is a function that takes the contents of the parent array as its para-
meters. With this approach we get rid of a lot of overhead and can make constructions much more readable.

p = point(0,1);
g = point (-1,-2);
1i = line(p, 9);

The function call may be followed by objects containing attributes. The attribute objects can be combined in
form of a list where the last appearance of an attribute defines the value.

p = point(0,1) "™ fillColor: 'blue' ";
blue =

fillColor: 'blue'

"w.
’

thick = "
strokeWidth: 8

q = point(l, 1) blue;
r = point (3, 4) blue, thick;

It might be interesting to compare the Euler line example in JavaScript with the same example translated to
JessieCode, which can be found online at http://jsxgraph.uni-bayreuth.de/wiki/index.php/Euler_line_source_
code
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3.3.4 Sketchometry

The new dynamic geometry system
(DGS) sketchometry is built on top
of the JSXGraph library and utilizes
the JessieCode language to provide
a graphical user interface (GUI). It
allows the user to construct geometric
objects and define their dependencies
by simply drawing sketches of lines,
circles, and points on the screen.

A graphical user interface has to meet different requirements for touch devices in comparison to mouse based
devices. Mouse-travel paths have a different meaning on touch devices - the mouse can only produce relative
movements of a virtual finger. Reaching the location of an interaction using the finger directly is much more
natural and faster for the user. This influences the user interface design, e.g. the arrangement of buttons, the
usage of popups, and the input of geometric objects.

Sketchometry consists of a minimal user interface in connection with a novel mixture of algorithms to inter-
pret the user input and convert it into exact mathematical objects. Sketches and gestures are used to input
geometric objects and their dependencies directly without the preselection of a specific construction tool from
a toolbar. Sketchometry interprets the paths generated by sketches and gestures and enables constructing by
natural interactions.
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In contrast, in most other DGS for constructing geometric objects, the user constantly has to use toolbar
buttons. This may interrupt the users work cycle. Sketchometry breaks this behavior. The user does not have to
select a tool - he just has to memorize few simple pre-defined figures, that when they are drawn on the board
construct different objects.

Sketchometry is free to use, runs on all modern HTML5 browsers and is well suited for classroom demonstra-
tions on an interactive whiteboard. But first of all, sketchometry is intended to be used by students in classroom.
By purpose it does not have the amount of functionality easily available as offered by other dynamic geometry
systems. But in many cases these programs are used by the teacher to prepare interactive demonstrations
for the students. Rarely, students are expected to start constructing from scratch with these systems. On the
contrary, sketchometry tries to revitalize an active participation of the students.

For the more ambitious user the GUI also incorporates JessieCode, which allows users to fine-tune their
constructions and script certain actions on the board. By using this language it is also possible to do keyboard-
only constructions, which means no mouse or other input mechanismis needed. Saving into local storage is done
constantly and transparent to the user — there is no save button anymore. For external storage several cloud
services can be used. At the time of writing, Dropbox, Google Drive, Skydrive and Ubuntu One are supported.

Sketch recognition

While a sketch is drawn on the screen, several steps occur
in the background.

At first, the gesture is analyzed by the $N-algorithm 28 to
recognize the shape of the figure and to provide a list of
candidates of object types, which could be constructed.

Secondly already existing geometric objects, like points,
lines and circles, which have been hit by the sketched
curve, are collected.

Third, corners in the sketched curve are detected #2 4%,

Finally, the list of construction type candidates is tested

against the collection of hitted objects and corners. M ¥
Those candidates for which most of the collected objects

make sense are kept, the other construction types are

discarded.

That way the list with constructible elements gets
narrowed down, until only one entry remains.

If there remains more than one candidate, the construction fails and the user has to repeat the sketch.

3.3.5 Conclusion

JSXGraph, JessieCode and sketchometry enable dynamic mathematics on a great variety of devices from
desktop computers to mobile devices. Small handheld devices are well suited for use in classroom and allow to
use electronic material side by side with printed textbooks.

JSXGraph and JessieCode are intended to be used by software developers and ebook authors to create inter-

active content for web pages and ebooks. Sketchometry is expected to be used by students in the classroom. It
is the first step towards a natural user interface which allows a “hands-on” exploration of geometry.
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4 IBME in Schools: Overview
and Examples in International
Contexts

4.1 Inquiry-based mathematics education in
primary school: Overview and examples from
Bavaria/Germany

Volker Ulm

4.1.1 Heterogeneity in primary school

Heterogeneity in school is not a new phenomenon. In 1807 the educationalist and philosopher Johann Friedrich
Herbart (1776 — 1841) noticed: "The difference of heads is the greatest obstacle for education in school. To ignore
that is the basic deficiency of the school system.”

Children already differ with respect to their mathematical knowledge and understanding when they enter the
school system. Some first graders have clear notions of numbers up to 1,000 and the decimal system, while
others struggle with numbers up to five. It is a pedagogical illusion to think of *homogeneous learning groups”
in class.

How should the school system deal with this reality of heterogeneity? One possibility could be the attempt to
offer education for the “average pupil”, i.e. addressing the “middle level” in class. This might be motivated by
the pedagogical aim to reduce differences between the pupils and to bring all children to the same level. But is
this fair to the individual child or is it effective?

Another possible view on heterogeneity is to regard it as something very normal, not as an obstacle, but even as
an advantage or a chance for learning in class. If one accepts that pupils are different and will always be different
in the future, the pedagogical question arises how to support and develop the individual abilities of each child
in a classroom setting.

A way that proved to be quite successful in the Fibonacci project can be described as “natural differentiation”
with “substantial learning environments” 11 12, 13, 8_A|l pupils get the same learning offer, but the topic has an
inherent complexity so that each child can primarily work at his own individual level. Each pupil can begin doing
mathematics and experience a sense of achievement. Weaker students find rich fields to develop their mathe-
matical understanding and expand their abilities; high performers work at their level and get deeper insights.
The common exchange of ideas and results in groups and in class intensifies the pupils’ mathematical under-
standing and fosters their communication skills. The following sections provide a theoretical basis for this didac-
tical concept and provide examples to illustrate it.
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As an introduction, let us look at a concrete example from mathematics education at a third grade primary
school in Germany where the pupils were around nine years old. The teacher prepared eight “Fibonacci Series”
tasks and presented them using papers posted to the blackboard and a worksheet (see below). The pupils were
asked to work on the tasks individually and in small groups. They were told to write all their considerations,
calculations and results on white sheets of paper and stick them to the respective task on the blackboard (Fig. 1).
The pupils’ results were visible to all of the children and to the teacher. This proved to be an ideal basis for further
communication in and between the groups, and for the class as a whole.

In the first task, the children explored the special properties of number series like "2 -3 -5 - 8 — 13" or
"8-3-11-14-25" and came up with similar series themselves using other starting numbers. By observing the
groups and talking with them the teacher was able to make sure that every child understood the construction
principle of these series — an essential basis for further calculations and explorations.

With the further tasks (see below), the children varied the first number, the second number or both starting
numbers in several ways and investigated the effects on the fifth number of the series. The children could
choose which task they wanted to work
on, but the teacher recommended dealing
with the tasks in the given order. This
offered many possibilities to calculate,
to explore relationships and underlying
mathematical patterns, to describe obser-
vations and conjectures, to discuss and to
argue.To put it briefly, the children worked
mathematically in a very comprehensive
way. The openness of the learning environ-
ment made is possible for the children to
do mathematics at their own individual
level. According to the natural heteroge-
neity of the class, the pupils’ results, which
had been posted on the blackboard (Fig. 1),
showed a broad variety of calculations and
discoveries.

Coad] = a-y 3 Cedric, a weaker pupil, dealt with task e) (see below) and explored
e the effects on the series when interchanging the two starting
. numbers. Although he made four mistakes in his additions (Fig. 2),
A=-4= AQ=A = 'i?-l'l' he did make a discovery and wrote it on his paper: "The numbers 9,

: 13, 10 are always the same.”

e -~ 3
- B = b= -
?‘. g -1E-Z5-42
I - b --23-To-26
T i
G <t - TO-Th ”__"{ ¥ Laura also worked on task e) and interchanged starting numbers of
e FE=LZ the series (Fig. 3). She discovered a very substantial pattern, and
"|':-. S . 2 wrote below her calculations: "The difference of the first and the

second number is equal to the difference of the fifth numbers.”

66



Natalie engaged herself in task g) and looked for series
wherethefifthnumberis100 (Fig. 4). She beganwiththe
starting numbers "50 — 10" and varied them systemati-
cally until she found the series "20-20-40—-60-100".
After several more attempts of variations she found
"17-22-39-61-100" as a second possibility. Taking
into account her results from tasks b) and c), she
finally found a principle how to produce many further
series with the fifth number being 100: Decrease the
first number by 3 and increase the second number by
2 or, alternatively, increase the first number by 3 and
decrease the second number by 2.
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With all these sheets from the children posted on the blackboard, the lesson ended with presentations and a
class discussion of the pupils’ ideas and results. In this phase the teacher’s main task was to organize and mode-

rate the communication processes and to sum up key results.

This introductory example shows how the natural heterogeneity in class can be met by natural differentiation
and inquiry-based learning. In the next section we will develop a basic theoretical foundation and work out

general principles of this didactical concept.
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WORKSHEET

Fibonacci Series

a) Explore Fibonacci Series

What are the special properties of the
following two series?

Invent such series yourself. 8 3 11 14 25

Choose any two starting numbers.

b) Vary the First Number

What happens to the fifth number if you increase the first numberby 1, 2, 3, ...?
What happens to the fifth number if you decrease the first numberby 1, 2, 3, ...?
Write down examples and describe your observations.

¢) Vary the Second Number

What happens to the fifth number if you increase the second number by 1, 2, 3, ...?
What happens to the fifth number if you decrease the second numberby 1, 2, 3, ...?
Write down examples and describe your observations.

d) Vary Both Starting Numbers

What happens to the fifth number if you increase both starting numbers by 1, 2, 3, ...?
What happens to the fifth number if you decrease both starting numbers by 1, 2, 3, ...?
Write down examples and describe your observations.

e) Interchange Both Starting Numbers

What happens to the fifth number if you interchange both starting numbers?
Write down examples and describe your observations.

f) Equal Starting Numbers

What happens to the fifth number if you take two equal starting numbers?
Write down examples and describe your observations.

g) Target Number 100

100

Look for starting numbers so
that the fifth number is 100.
Try to find several series with the fifth number 100. Describe your observations.

h) Even and Odd Target Numbers

Look for starting numbers so that the fifth number is even.
Look for starting numbers so that the fifth number is odd.
Describe your observations.
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4.1.2 Aspects of learning

The ultimate goal of all efforts of mathematics education is for students to learn. In this context “learning” is
meant in the broadest sense and includes the development of knowledge and understanding as well as attitudes,
behaviour and moral values. Therefore, a short glance at the nature of learning is quite useful. The following
aspects of learning have been formulated by Pedagogical Psychology e.g. % . They provide a background for
the subsequent sections.

= Learning is a constructive process. Knowledge and understanding cannot simply be transferred from
teachers to students. According to theories of constructivism, people construct their knowledge and
understanding by interpreting personal perceptions based on individual prior knowledge and prior
understanding. Cognitive psychology describes learning as a process of construction and modification of
cognitive structures. From the view of neurosciences, learning is the construction of neuronal networks.
Connections between neurons develop and change. All these theoretical approaches stress the construc-
tive nature of learning and have several consequences in common:

Learning is an individual process. Learning takes place inside the mind of each learner. One will not find
two human brains that are exactly the same. Each person has individual cognitive structures — a different
neural network. Thus, learning processes differ from person to person.

Learning is an active process. Cognitive activity means working with the content in mind, viewing it from
different perspectives and relating it to the existing network of knowledge.

Learning is a self-organized process. The learner is at least partially responsible for the organization of his
individual learning. The degree of responsibility may vary in the phases of planning, realizing or reflecting
on learning processes.

Learning is a situational process. It is influenced by the learning situation. A meaningful context or a
pleasant atmosphere can foster learning; fear can hamper it.

Learning is a social process. On the one hand, the socio-cultural environment has great impact on educa-
tional processes. Onthe otherhand, learningin schoolis based oninterpersonal cooperation and communi-
cation between students and teachers.

Finally, learning is driven by examples. We will use three examples to illustrate this.

Let us think of a term from everyday life, like “apple”. We all know what an apple is and have general
knowledge about apples. But how did we acquire this knowledge? Children usually gain this knowledge
through examples in their first years of life. Children don’t get definitions of apples like “An object is called
an apple if ...". They construct general knowledge on apples by generalizing experiences with concrete

"o

objects. The same is true for many notions of everyday life like “window”, “chair”, “dog”, etc.

A second example, which is closer to mathematics, is grammar. Children learn how to speak correctly
in their native language not by explicitly learning grammar rules. They learn how to construct sentences
through examples, by trial and error. Grammar rules are descriptions of what is learnt through examples.

This general principle of learning is valid for mathematics as well. There are lots of rules and laws in school
mathematics: the commutative law for addition and multiplication, the rule for dividing fractions, etc.
Pupils gain understanding of such rules by exploring examples that carry the general patterns. The general
rules are descriptions of what is learnt through examples.
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4.1.3 Inquiry-based learning

Learning is a very complex phenomenon and there are many ways human beings can learn. Psychology and
pedagogy developed sophisticated models of learning and differentiations of types of learning. Although
the Fibonacci project focuses on inquiry-based learning, we must keep in mind that this is only one manner of
learning related to a specific point of view on this complex phenomenon.

How can inquiry-based learning be described? It is characteristic that the learner

= explores a topic
= which is to some extent new and complex for him
= through individual cognitive activity.

The learner should feel a certain complexity and novelty of the topic, so that tasks cannot be done just by
applying existing knowledge and well-known strategies. The topic should be challenging for the learner, e.g.
for the pupil in primary school, and it should be worth dealing with for a certain amount of time. Of course, the
result may be well known in mathematics in general. Pupils can explore mathematical results that have been
known to mankind for thousands of years in an inquiry-based way.

Typically, exploring a topic means, e.g.

= looking at examples, varying given situations,

= connecting new phenomena to existing knowledge,
= formulating observations and conjectures,

= structuring situations and detecting patterns,

= describing results and giving reasons for them.

This notion emphasizes individual cognitive activity. Of course, this can be combined with and supported by
hands-on activities. Moreover, cooperation in a group and exchange with others can also be incorporated. Since
learning is a social process, individual and cooperative learning should even be intertwined closely in class. We
will come back to that in section 4.1.6 when we consider methodology.

4.1.4 Learning environments for IBME

After taking a glance at “learning”, we now look at the other side of the medal: “teaching”. A very fundamental
question of the school system is how to initiate and support students’ learning effectively — particularly in the
classroom setting. This is a very complex problem that has no simple answer. Mankind developed many teaching
methods, each with their own specific advantages and disadvantages.

The Fibonacci project aims at large-scale dissemination of inquiry-based mathematics education. It is clear that
this is only one teaching and learning method among many others. It would be one-sided and ineffective to
teach exclusively according to just this method. However, a certain shift of mathematics education towards
more inquiry and more self-organized and cooperative learning for students seems to be a reasonable approach
to overcoming well-known problems of mathematics education as revealed by international studies such as
TIMSS and PISA.

In this and the following two sections, we will elaborate on the didactic concept of inquiry-based mathematics
education. Considering the aspects of learning in section 4.1.2, we start with a model that seems to be quite
natural for describing teaching and learning processes in school.
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According to constructivist points of view, the teacher cannot put knowledge directly into the learners’ heads.
The learning environment is the essential link between the teacher and the learner. This notion includes five
components: the tasks for the learner working with the content, the method of teaching and learning, the
arrangement of media, and the social situation with the teacher and other learners as partners for learning.

It is the teacher’s responsibility to design the learning environment. So he offers a basis for the learner’s work.
This allows the teacher to get feedback about both the learner and the learning environment.

This model is based on and extends the didactical concepts of “substantial learning environments” by
Wittmann 1% 12 or “strong learning environments” by Dubs 2.

This model does of course simplify reality — as any model does. However, the function and the strength of
models is to reveal basic structures of complex situations. On the one hand, this model of learning environ-
ments shows that the teacher cannot enforce or steer students’ learning directly. The teacher cannot influence
the students’ minds directly. This might be disappointing or even frustrating for teachers. On the other hand,
if we think positively, it is the teacher’s task to design learning environments in order to initiate and encourage
the students’ learning.

The aspects of learning noted in section 4.1.2 imply fundamental consequences for the design of learning
environments: Tasks should be problem-based with necessary openness for inquiry-based learning. They should
offer meaningful examples and contexts to view situations from multiple perspectives. The teaching methods
should make the learners work individually, actively, self-organized and cooperatively. The students should
experience mathematics as a field of explorations and discoveries. And they should present and discuss their
ideas and results. See also the Background Resource “Inquiry in Mathematics Education”.

4.1.5 Tasks for IBME

The tasks for the pupils are a core element of learning environments. They carry mathematical situations and
give impulses for thinking and working mathematically. This raises the question: Are there tasks that are espe-
cially good for inquiry-based mathematics education? Surely, tasks by themselves cannot be “good” or “bad”,
since it is crucial how they are used in actual teaching and learning situations. However, there are attributes of
tasks that offer a certain potential for initiating and supporting inquiry-based learning in school.

= Tasks for inquiry-based learning should be open at least to some extent, i.e. they should outline a mathe-
matical situation that offers different approaches to and various possibilities for doing mathematics.
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= Tasks should be mathematically rich, i.e. they should refer to mathematical content of a certain depth
and complexity for the learner. Thus, it should be worthwhile for the learner to engage himself with the
tasks some amount of time. They should offer possibilities to do mathematics in a comprehensive way, to
increase or to deepen personal mathematical insights and understanding.

= Tasks should be challenging and motivating for the pupils. This is a basic requirement for the students’
engagement in tasks.

= Tasks should be easily accessible to all children, i.e. each child should have the possibility to begin working
with the tasks and experience a sense of achievement in doing mathematics.

= Tasks should support working at different levels, i.e. weaker pupils should have opportunities to expand
their abilities and achieve specific results. On the other hand, gifted students should be able to work at
their more advanced levels.

It is part of the teacher’s professional competence to develop and to provide adequate tasks for his pupils and
to integrate these tasks in inspiring learning environments. See also chapter 2 about the basic patterns (key
features of inquiry pedagogy).

4.1.6 Teaching methods for IBME

Besides tasks and content, the teaching method is another key element of learning environments. How can
we organize mathematics education to effectively support inquiry-based learning? There is a wide variety of
methodical concepts. The following table shows just one example. However, this example seems to be quite
natural for inquiry-based mathematics education in a classroom setting. It structures lessons in four phases and
combines constructivist notions of learning (see section 4.1.2) with realities in school:

a) Individual work

Since learning is an individual process, students initially work on their own. They are faced with the necessity
to explore the content, to activate their prior knowledge, to develop ideas and to make discoveries.

b) Cooperation with partners

Learning is a social process. It is very natural for students to discuss their ideas with partners in small groups
and work on problems cooperatively. This communication helps to order thoughts and to get more ideas.
Meanwhile, the teacher can stay in the background or turn his attention to individuals.

c) Presentation of ideas

After having worked individually and in groups, the students present their ideas and discuss them in class. The
different contributions reveal multiple aspects of the topic so it can be viewed from different perspectives.
Moreover, students develop presentation, communication and argumentation skills.

d) Summary of results

Finally, the students’ results are summarized and possibly expanded by the teacher. It is his task to intro-
duce mathematical conventions and to consider curricular regulations. But since the students have already
explored the new content on their own paths, they are more likely able to integrate the teacher’s explanations
into their individual cognitive structures.
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This methodical concept combines individual learning with cooperative learning in both small groups and the
class as a whole in a very natural way. Of course, this concept is not really new. It has been described in a similar
way by different expressions like “Think — Pair — Share” “ or “| —=You —We" 3; see also chapter 2.3 in this book.

The basic feature of this concept is the natural combination of different phases of learning in class, with each of
them having specific functions for mathematics education: The students have the freedom to do mathematics
on their own and to develop individual understanding. They discuss and present their ideas and results, which
helps them develop skills for communicating and arguing mathematically. The teacher can add structure to
the students’ ideas, make things more clear, explain mathematical content and summarize results, e.g. on the
blackboard (or whiteboard).

Here again we have to consider that this methodical concept is only one of many methods. It would be one-
sided and imbalanced if mathematics education were organized only in this way. Lively mathematics lessons
should draw on a broad spectrum of teaching methods.

4.1.7 Example for arithmetic: Windows on the hundreds chart

We illustrate the didactical concepts of the previous sections using two examples that are tasks for mathematics
education in primary school & 7. They fulfil the quality criteria set up in section 4.1.5, but we have to keep in
mind that tasks are only one part of learning environments. In the classroom, they have to be combined with
a teaching method that supports inquiry-based learning and thus they have to be integrated in an inspiring
learning environment.

The hundreds chart is a tool in primary school that gives orientation in the range of natural numbers up to 100.
It represents these numbers in a clearly structured way. In the tasks below the children choose numbers from
the hundreds chart using windows cut out of paper and calculate with the numbers in the window. This not only
increases their calculation skills, but also gives them a chance to explore the structure of the hundreds chart.

~

If you put Window 1, the window with three fields in a straight line, on the hundreds chart,

E you will find that the number in the middle field multiplied by three is the same as the sum of all
three numbers. Thus, you will find all multiples of 3 between 6 and 297 except for 310 and 3 - 91.

In Window 2, which consists of three fields in an L-shape, you have to consider several different cases.
Depending on how the window is put on the hundreds chart, you get:

=] three times the number in the corner + 9,

1. | three times the number in the corner - 9,
EQ three times the number in the corner + 11 or
" three times the number in the corner - 11.

Thus, using this window, you get sums between 14 and 289.
Adding up the numbers in Window 3 provides the following results:
E E odd numbers from 45 to 359 or

E&J Bl 2l even numbers from 18 to 386 that are not divisible by 4.
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Summing the numbers in Window 4

E E provides only even results between 28 and 376.

== ] ]
N\ J

In order to find the smallest or greatest result for each window, the children have to understand the structure
of the hundreds chart. They must develop a strategy and consider all possibilities of turning and flipping the
windows.

Moving the windows systematically provides results that change according to certain rules. The sum of the
numbers within the windows with three fields

= will increase by 3, if you move the window to the right (because each of the three numbers increases
by one),

= will decrease by 3, if you move the window to the left (because each of the three numbers decreases
by one),

= will increase by 30, if you move the window down (because each of the three numbers increases by 10),

= will decrease by 30, if you move the window up (because each of the three numbers decreases by 10).

The results of the windows with four fields follow the same rules, increasing or decreasing by 4 and 40, respec-
tively.

In order to find three or four numbers that add up to a given result, children have to work strategically and
purposefully by using what they already know about the change of sums when the window is moved in certain
directions.

“Windows on the Hundreds Chart” can be a topic in class for two to three lessons. In an introductory phase,
the class as a whole can place Window 1 on the hundreds chart. The sum of the three numbers is calculated.
Afterwards, the children should suggest what happens if you put the window in another place. (*The result
increases.”, etc.) The teacher should tell the pupils that they are allowed to turn and rotate the window. This
common starting phase should guarantee that each child has understood the basic principle of working with
the windows.

Then, the pupils could work individually and cooperatively on the tasks on the worksheet. The teaching unit can
be structured according to the methodical concept depicted in section 4.1.6. It might be useful for the children
to write down their calculations, observations, conjectures and results on white sheets of paper and stick them
on the blackboard or a wall in the classroom like in Fig. 1. This makes all products visible to all the other children
and to the teacher, and it may serve as a basis for further communication between the groups and in the whole
class. The teacher could introduce and moderate the final presentation, discussion and reflection phase by
asking questions such as: Which exercises did you work on? What calculations did you do? What did you notice?
What smallest or greatest result did you find? Which discoveries of other children surprised you? What else do
you want to verify or explore by yourself?
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Windows on the Hundreds Chart

You can do experiments with the hundreds chart.

1 2 3 4 5 6 7 8 9 | 10
11 | 12 | 13 | 14 | 15| 16 | 17 | 18 | 19 | 20
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30
31 |32 | 33 | 34| 35|36 | 37 | 38| 39 | 40
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60
61 | 62 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70
71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80
81 | 82 | 83 | 8 | 85 | 86 | 87 88 | 8 | 90
91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100

Cut out the four rectangles. Cut out the centre, too. You get “windows" for the hundreds chart.

75



Explorer’s Tasks

a) Take one of the four windows and put it on the hundreds chart. Add up the numbers you see in the window.

You can turn and rotate the window. Can you find the smallest and the greatest possible result?

b) Put the window on the hundreds chart. Add up the numbers you see in the window.

Move the window one field to the right or to the left. What is the sum now?

Compare your results. Can you figure out a rule? Write down your observations.

What happens if you move the window one field up or one field down?

) Try to put the window on the hundreds chart so that all numbers add up to 54. Then try to find the sum 90.
Write down your calculations.

Think of other results and try to find numbers in the window that add up to these results.

Are there any sums that you cannot add up to?

d) Take the other windows and explore the questions above for these windows.
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4.1.8 Example for geometry: Quadruples

Assembling cubes to form new shapes, classifying these shapes and constructing plans for such shapes develops
spatial awareness and geometrical skills. Moreover, this topic emphasizes the playful aspect of doing mathe-
matics.

There are eight different ways to connect four cubes to quadruples:

||||D|7|U||TD||D—UM%%E@

A B C D E F G H

All other possibilities can be found by rotating these eight combinations. Due to the small number of possible
combinations, it is reasonable to let the children find all possible combinations by themselves, to compare
quadruples, to recognize the same or similar quadruples and to find an argument for what is a complete list of
all combinations.

The activities with the cube quadruples can be done in two to three lessons. It isimportant to start with a simple
task where each child constructs quadruples. By actively handling the cubes (e.g. wooden cubes), each child can
experience rotating his combinations. Pupils will notice that a quadruple may look different in various positions,
but it still has the same arrangement of the cubes. Standard wooden cubes are appealing due to the material,
and they are geometrically clear due to their flat faces. But the problem is that the quadruples tend to fall apart
while being rotated. You can fix this by using an adhesive to glue the cubes together, which can be removed
later. A more stable option, but less exact in form, is to use cubes that can be plugged together.

Argumentation is of great importance as the children decide whether the quadruples are equal or different and
discuss the handling of their combinations: *“When | rotate my quadruple it looks exactly like yours. So they are
not different, but the same.”

If the teacher specifies that there are eight different quadruples, the children have a clear goal. But this could
lead to frustration if they do not find all eight possibilities. It is more interesting to let children explore by them-
selves, maybe leaving the task in class for a longer amount of time so that they can think more about it. If the
students are content with their results too quickly, the teacher can keep them thinking by showing them a
“new” quadruple.

When drafting construction plans, one should discuss in class that for each quadruple a base can be chosen and
that on each square of this base the respective height should be written. Construction plans can be illustrated
like this:

For quadruple A:

or

For quadruple B: —

or or (1|11
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There are three construction plans for quadruple B and there are two construction plans for quadruples A,
C and E. For quadruples D, F, G and H there is only one construction plan (excluding reflections and rotations).
The total sum of the numbers in the construction plans is always four, as this sum is the number of the cubes.

Note that quadruples B, C, D, F, G and H could also be positioned
such that the base is smaller than the bird’s eye perspective, e.g.: |

To draw up the construction plans the class must decide whether “floating” cubes are allowed. Does every cube
have to lie on the ground or on another cube? Here children may find new construction plans for such situations,

e.g. for the quadruple above:

Here "2-1" means: “There are two cubes, but the bottom one (on the ground level) is missing.” Note that
(2-1)+2+1 again equals four, which is also an appropriate arithmetic description of the situation.

When the children have drawn several construction plans, they can be encouraged to organize their plans. One
possible sorting is:

= Construction plans with the highest height of one. (Construction plans for A, B, C, D and E are suitable.)
= Construction plans with the highest height of two. (Construction plans for B, C, F, G and H are suitable.)
= Construction plans with the highest height of three. (Construction plan for B is suitable.)

= Construction plans with the highest height of four. (Construction plan for A is suitable.)

Children can also distinguish construction plans with 1, 2, 3 or 4 squares in the base, etc. By doing this, children
can also understand why there cannot be more than eight distinct quadruples.

= If the four cubes are arranged in a plane, the only possibilities are all four in a long row (A), one cube next
to the remaining three (B and C), or two cubes next to the other two (D and E).

= For combinations in which three cubes are on one level and the fourth on the level above, the fourth cube
can sit on any of the three other cubes. Thus, there are three possibilities (F, G and H).

= As soon as the quadruple is three cubes high, the quadruple can be rotated such that it is only one cube in
height.

The children hone their spatial perception skills and their ability to think in three dimensions by making oblique
drawings of the quadruples. It may be helpful for the children to have the quadruple they are drawing in front of
them. It can also be helpful to colour the front faces of the cubes in one colour, the right faces and other sides
in different colours.

Covering quadratic planes with quadruples is done by trial and error. Here the children will discover quickly that
the quadruples F, G and H are not suitable, as they cover two levels in each position. With the quadruples A, B,
C and E, the 4x4 squares can be covered. Quadruple D always creates squares in the corners that can no longer
be covered.
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WORKSHEET

Quadruples

Exploring quadruples

Quadruples consist of four identical cubes that are stuck together at complete sides. Two examples are:

a) Make quadruples by yourself. Compare with your partner.
b) How many different quadruples can you find?
c) How many different quadruples can you find in the class?

d) Create “families” of quadruples that belong together. Invent names for the “families”. What are the specific
characteristics of each family?

e) Examine the quadruples for symmetry.

f) Laura would like to paint the quadruples. For which ones does she need the most paint, for which ones the
least paint? Explain.

Construction Plans

a) This construction plan is for the given quadruple.

|

Draw construction plans for other quadruples in your workbook.

b) Is there only one possible construction plan for each quadruple, or is there more than one?
c) What do all construction plans for quadruples have in common?
d) Try to arrange the construction plans in groups.

e) Which construction plans belong to the same quadruple? Colour them in the same colour.

AEY R E EYEY R FA a]a]a]3] )
1|1

2
1[1]1] 1 A ENEY I FYET Y EE
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WORKSHEET

Different Views

Which of the quadruples below are equal? Colour them in the same colour.

d

E@ﬂ
&=
)

Completing Construction Plans
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Complete the construction plans for the given quadruples.
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WORKSHEET

Drawing Quadruples

a) Copy these quadruples on the gridded paper in your workbook.

b) Explain how to make an oblique drawing on gridded paper.

c) Choose other quadruples and make oblique drawings in your workbook. Compare the pictures with your
neighbours.

Covering Squares

a) Can you cover the area of a 4x4-square with four equal quadruples? Make sketches.

b) Can you cover a 4x4-square with four different quadruples? Make sketches.

¢) Which quadruples are suitable for covering the squares? Which ones are not? Give reasons.
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4.2 The current state of IBME in the Czech Republic

Libuse Samkova

This article presents an overview of the current state of IBME in the Czech Republic and about the changes that
have occurred as a result of our participation in the Fibonacci project.

4.2.1 IBME from the perspective of the Czech Framework Educational Programme

First, we would like to introduce you to the basic concept of education in the Czech Republic. This concept is
based on teachings of Comenius (the principle of the illustrative nature of teaching) 14, and on John Dewey’s
logic of science (through practical work and active experimentation we create a theory of experience) 1% 16,

The obligatory document for teaching at primary and secondary schools in the Czech Republic is the Framework
Education Programme (FEP). Let us quote some passages from this programme.

The FEP for primary and lower secondary education says:

"An important part of mathematical education consists of non-standard application tasks and problems that
may be largely independent of the knowledge and skills of school mathematics, but in which logical thinking is
required. These tasks should be present in all thematic areas throughout basic education.

Pupils learn to deal with problem situations and tasks of daily life, to understand and analyse the problem, to
organize data and conditions, to draw sketches of situations, to solve optimization problems.” 18

And the FEP for upper secondary education says:

"Mathematical education helps cultivate abstract and analytical thinking, develops logical judgment, and
teaches clear and factual reasoning aimed at finding objective truths rather than defending one’s own opinion.

The focus of the instruction lies in mastering the ability to formulate a problem, along with a strategy to solve it,
in actively mastering mathematical tools and skills, and in cultivating the capability of applying these skills.” *

These quotes show that IBME education complies with the basic principles of mathematical education at Czech
primary and secondary schools.

4.2.2 Twin Centre Budweis and its background

The University of South Bohemia in Ceske Budejovice (Budweis) joined the Fibonacci project very recently in
September 2011. The staff of the Twin Centre Budweis is located at the Faculty of Education, at the Depart-
ment of Mathematics. As twinning partner of the University of Bayreuth, the centre focuses mainly on inquiry
in mathematics.

We decided to concentrate on lower and upper secondary schools. The reason is clear: We personally know skilled
secondary school teachers who have cooperated with our university for years. The initial portfolio of our Fibonacci
schools consists of two elementary schools (grades 6 —9), a grammar school (*gymnazium”), an integrated tech-
nical and vocational school, and a secondary vocational school of mechanical engineering and construction.

Although most Czech teachers know almost nothing about IBME, some of them have used the methods of IBME
intheirteaching for years. These ‘naturally IBME' teachers had priority in our Fibonacci team. The Fibonacciteam
was strengthened by selecting teachers who have worked with us continuously for a long time: Six in-service
teachers with an excellent set of skills for IBME were trained within the initial training session as mentor IBME
teachers.
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All of our Fibonacci mentors teach mathematics plus one or two other subjects such as biology, descriptive
geometry, IT, chemistry or technical training. We wanted to take advantage of this interdisciplinary background,
so we prepared the following two fundamental tasks for them:

Task No. 1:

The mentor teachers were asked to review their non-mathematical subjects to identify where
mathematics is used as a tool. Then, they were guided to suggest how to link the two subjects.

The objective of this task is clear: The teachers (and therefore their students) should understand the mathe-
matical ideas in a form and context that is useful for the non-mathematical subjects.

In addition to this multidisciplinary approach, TC1 Budweis initiates the development of learning environments
on a very important topic: “Improving financial literacy”. For details see 4.3.

Task No. 2:

The mentor teachers should review their mathematical activities
to identify where inquiry activities can be applied.

In both cases, the mentor Fibonacci teachers (with help of the TC staff) compose learning environments with
appropriate methodological materials and test them in their classes. The mentor teachers also help other
teachers with the use of learning environments in other classes.

Materials already harmonized and tested are posted on our project web 20, These materials are in Czech; the
most interesting are also available in English. Some of the most complicated environments are accompanied by
samples of students’ completed worksheets (scanned).

In-service mathematics teachers not (yet) involved in the Fibonacci project get informed about these IBME
learning environments at in-service teacher trainings, at teachers’ workshops, seminars and conferences,
by Czech educational journals, by colleagues involved in the Fibonacci project, etc. Pre-service mathematics
teachers at our university have IBME activities included in their university courses. For details see 5.1, 5.2.

4.2.3 Czech teachers and their experience

We interviewed all teachers involved in the Czech part of the Fibonacci project and asked them about their
experience with IBME teaching. They described the main advantages of this way of teaching and learning as

= it supports activation methods of education, individual activities, and group cooperation;
= it can be implemented in various phases of the educational process (motivation, discovering new facts,
deepening knowledge, application of acquired knowledge, acquired knowledge in new contexts, etc.).
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The teachers mostly see disadvantages of this way of teaching and learning in the fact that

= the examples of IBME, which include an experimental component, are time consuming — not only in
terms of time needed for teacher preparation, but also in terms of time needed for their realization in the
classroom;

= these experimental examples often require a corresponding lower number of pupils, which can be achieved
by dividing the classes for the lessons — an arrangement that is not always feasible.

In summary, the methods of IBME are very appropriate ways to teach. However, they must be properly incor-
porated due to their major demands. The use of IBME methods highly depends on the teacher’s ability and
willingness to use them.

4.2.4 Digest of learning environments created within the Fibonacci project

The following examples are inspired by the work of teachers involved in the Fibonacci project, namely Hana
Mahnelova from Gymnazium Nymburk (Examples No. 1 and 4), Kvetuse Mrazova from Vltava Basic School
Ceske Budejovice (Example No. 2), and Eva Vortelova from Integrated Technical and Vocational School Ceske
Budejovice (Example No. 3). The worksheets were successfully tested in classroom environments and harmo-
nized.

Other interesting examples of learning environments created within the project can be found in 4.3, in ° and at
our Fibonacci website 0. Learning environments on the web are accompanied by a list of additional information
(recommended student age, time requirements, GeoGebra files, etc.) as well as a ready-to-use student work-
sheet. The website is continuously updated.

Example No. 1 “Circumference of a circle - The discovery of the Ludolphine number”

This example shows the possibility of combining classical measurement experiments with computer experi-
ments prepared ahead of time. The example is also a good illustration of how to link school theory with everyday
practice.

The teacher brings various round objects (paper wheel, coin, can, cylinder, cup, plate, pot, thick marker, tube,
water pipe, bracelet, wall clock, hoop, etc.) to the classroom along with several measuring devices (ruler, set
square, tape measure, carpenter’s ruler, calliper, string, strip of paper, compass, etc.). The round objects have
different sizes and the measuring devices use different units (cm, mm, inch, feet ...).

The last part of the task takes place on computers using a GeoGebra file prepared ahead of time.

TASKS FOR STUDENTS:
TASK 1: RADIUS vs. DIAMETER (discussion)

How can you accurately measure the radius or the diameter of an object?
Suggest at least two different methods.

What tools are used to take these measurements in practice?
Which is easier: measuring the radius or the diameter?

In geometry, why do we usually use the radius?
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During the discussion students realize that there is a big difference between the school concept of a circle
(described by the radius and drawn using a compass adjusted to the given radius) and a practical concept
(measuring not the radius, but the diameter).

TASKS FOR STUDENTS:
TASK 2: PRACTICAL EXPERIMENT

Choose six different objects. For each of the objects, measure the circumference and the diameter. Write
your results in the table.

Object Circumference c (incm) | Diameter d c-d c:d
(in cm)

Fill in the last two columns of the table using your calculator (two decimal places).

What happens if you change centimetres to different measure units?

Formulate a hypothesis based on the data in the table.

It is important to have the fourth column in the table for comparison and to get the students thinking.

Students should be well aware that the fifth column does not depend on the units of measurement, but the
fourth column does.
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TASKS FOR STUDENTS:

TASK 3: COMPUTER EXPERIMENT
We will now model the same situation with the help of dynamic geometry software like GeoGebra.
A circle is given with radius r and centre S, and two points A, B on the circumference of this circle.

You may move points A, B all around the circle. These points determine the circular arc, whose length
is measured and mentioned in the accompanying interactive text.

You may also change the radius of the circle, using the green slider in the upper right corner.

Watch the results of the measurement. Formulate a hypothesis based on the data.

dhamefer o = 58

N J

Tasks 2 and 3 can be solved independently or in pairs, depending on the number of tools and computers available
in the classroom.

Since GeoGebra is free software and students can easily download it to their home computers, task 3 can also
be given as homework — with the teacher’s GeoGebra file being part of the homework assignment. For the

convenience of both teachers and students, the file is also available as a dynamic web worksheet 2*.

With skilled students and enough time the file can be created by students themselves as a part of the task.

Example No. 2 “Aspect ratios in a right-angled triangle”

This example is a targeted preparation for trigonometric functions.

TASKS FOR STUDENTS:
TASK 1: SIDES and ANGLES (discussion)

Are there some relations between lengths and angles of sides in a right-angled triangle?
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The discussion is primarily to motivate students. Students probably don’t have any idea about the relation. The
teacher might write a YES/NO table on the board and count students’ opinions.

(- )

TASKS FOR STUDENTS:
TASK 2: CALCULATIONS

Calculate the ratios %, %

, %, and g in the following triangles,

round the results to 2 decimal places.

&

]

B =4 g

The students get several different worksheets, each with two non-similar right-angled triangles. The worksheets
differ in the length of sides only; angles are the same. Neighbouring students receive different worksheets.

Each student completes the worksheet individually, with help of a calculator. Then the students jot down their
results belonging to the first triangle in the worksheet, and the teacher writes the results on the black board —
it might look like this:

1t triangle " 5 . 5 b 5 b

Worksheet No. ¢ ¢ E a

1 4.26 2.98 5.2 0.82 0.57 1.43 0.70
2 2.96 2.07 3.61 0.82 0.57 1.43 0.70
3 3.62 2.53 4.42 0.82 0.57 1.43 0.70
4 5 3.5 6.1 0.82 0.57 1.43 0.70
5 5.46 3.82 6.67 0.82 0.57 1.43 0.70

Initially, students are surprised that they get the same results on different worksheets (i.e. for different
triangles). Then they are encouraged by the teacher to find out whether the triangles on different worksheets
have something in common. After a while they will discover the matching angles.
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The second triangle’s report follows, with the same course.

The last task is a computer experiment: The teacher brings a prepared GeoGebra file to the classroom.

TASKS FOR STUDENTS: \
TASK 3: COMPUTER EXPERIMENT
Now we will model the same situation using the dynamic geometry software GeoGebra.
Here is a triangle ABC with a right angle in C.

You may change the length a using the slider in the upper left corner, the other sides will change auto-
matically to keep all angles of the triangle unchanged. All sides of the triangle are automatically measured,
ratios calculated and mentioned in the interactive text.

You may move point A upwards to change angle B and see what happens with ratios.

Goniometric functions
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The teacher may also prepare a GeoGebra file that allows changing the right-angled triangle into an oblique
triangle to see what happens with ratios in this case.

Example No. 3 *"Dams and their role during floods -

Characteristics of linear functions”
This example shows a very topical usage of linear functions in a real-life situation. Summer floods have been a
major problem in our area in recent years. The worst one was ten years ago, when the centre of Ceske Budejovice

was flooded almost to a height of 1 metre. Students will remember the experience well and be interested in the
topic of floods.
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TASKS FOR STUDENTS:
TASK 1: THE ROLE OF DAMS DURING FLOODS (discussion)
What is the role of dams during floods?

How long can the dam protect the region from the flood?

Which dam is important for your town during floods?

_ J

The total capacity of the Orlik reservoir is 780,000,000 m°.

At the beginning of the floods in 2002, the reservoir
was filled with 500,000,000 m? of water.

At that time, the inflow to the reservoir was 4,000 m?/s.
The outflow from the reservoir was 1,000 m?/s.

TASKS FOR STUDENTS:

TASK 2: CALCULATIONS
How much water flowed into the reservoir in one hour?
How long did it take to fill the Orlik reservoir during the 2002 floods?
How could the time it takes to fill the reservoir be prolonged?

Suppose that the outflow is doubled, i.e. increased to 2,000 m*/s. How long would it take to fill the reservoir
in this case?

_ J
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TASKS FOR STUDENTS:

TASK 3: PLOTS and CALCULATIONS

Suppose that the Orlik reservoir satisfies the following conditions:
(1) The reservoir is empty; inflow is 2,000 m?/s, outflow 1,000 m?/s.
(2) The reservoir is filled with 650,000,000 m? of water; inflow is 2,000 m3/s, outflow 1,000 m?/s.
(3) The reservoir is filled with 500,000,000 m? of water; inflow is 4,000 m?/s, outflow 1,000 m?3/s.
(4) The reservoir is filled with 500,000,000 m? of water; inflow is 2,000 m?/s, outflow 1,000 m?3/s.
(5) The reservoir is filled with 500,000,000 m? of water; inflow is 3,000 m?/s, outflow 1,000 m?3/s.
(6) The reservoir is filled with 500,000,000 m? of water; inflow is 1,000 m?/s, outflow 2,000 m3/s.

For each option, find a prescription and a domain of a function expressing the dependence of the amount of
water in the reservoir on the time in hours or in days, respectively.

Draw a graph that shows all the options and illustrates the forecast for the next 48 hours or next 7 days,
respectively.

A graphical solution for a 7-day forecast created in GeoGebra:
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Students should be able to analyse the principle of the reservoir, convert the inflow and the outflow between
different units (m3/s, m*/hour and m3/day), and choose the best suitable units in various situations. They also
should be able to identify when the reservoir is completely full (or empty) with the corresponding situation in
the graph of a linear function.

Skilled students may draw a graph for situations when the inflow/outflow is not constant. For example: When
the outflow doubles for 10 hours, the inflow is reduced by half after 20 hours, etc.

Example No. 4 “Searching for common features of graphs -
Characteristics of functions”

This example leaves the process of inquiry entirely to students. They do not receive any guidance or advice.

The worksheet is intended for use when first introducing the topic of “functions” in upper-secondary schools.
Tasks 1 and 2 can be developed independently or in pairs; task 3 is prepared for students who are fast and skilled
to work on individually. The worksheet is completed during a broad discussion of the students’ final results.

(- )

TASKS FOR STUDENTS:

Functions express the dependence of one variable on another (e.g. the dependence of average daily tempera-
ture on time, of mileage on speed, of the volume of supply on price, etc.) and reflect the relationship between
quantities in various disciplines. For better orientation in functions, we can organize them into groups
according to certain common features. To do this properly, we need to formulate the distinguishing features
of behaviour of functions — their characteristic features.

TASK 1: LOOKING FOR FEATURES (individual work)

The following figures show the dependence of variables in graphical form, through the graph of a function.
Examine each figure carefully, and describe all characteristic features that you can see.
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TASKS FOR STUDENTS:
TASK 2: GENERALIZATION

Try to generalize which features are important for working with functions and for their proper grouping.

/
TASKS FOR STUDENTS:

TASK 3: INANOTHER CONTEXT

Which of the features from TASK 1 and 2 can you derive from a prescription of a function y = (x+1)* ?
Do not use the graph of the function, just the prescription!




The worksheet is followed up by proper definitions of basic properties of functions: domain, range, bounded
values, intersections with axes, symmetry (even, odd function), monotony, injectiveness, local and global
extremes (minimum, maximum), convexity, continuity, etc.

4.2.5 IBME at Czech vocational schools

As mentioned in the general introduction, two of our Fibonacci schools are secondary vocational schools:
The Integrated Technical and Vocational School in Ceske Budejovice (ITVS) and the Secondary Vocational
School of Mechanical Engineering and Construction in Tabor (SMEC). ITVS is intended for future carpenters,
plumbers, painters, bricklayers, joiners, locksmiths and chimneysweeps. These students take part in three-year
apprenticeships without a school-leaving exam and begin working in their respective fields immediately after
finishing school. Since this three-year apprenticeship is the lowest upper-secondary type of education in the
Czech Republic, there are many lower performing students in these classes.

SMEC is quite different. It also teaches future carpenters, bricklayers, joiners and machinists in three-year
apprenticeships without a school-leaving exam. But they also teach future designers, builders and engineers in
four-year study programmes with a school-leaving exam, and these students are generally expected to continue
their studies at a technical university.

We have excellent experience with the implementation of IBME in mathematics classes at these vocational
schools: As for apprentice classes, we have several IBME environments already successfully tested there, and
the response has been very positive. For instance, "“Dams and their role during floods — Characteristics of linear
functions” (see Example No. 3 from 4.2.4), “Where to fill the tank of our family car — The real-life use of linear
functions”, and “Home electricity consumption and costs — elementary statistics in practice”. You can find all
of these examples on our Fibonacci website 2°. These topics are real-life oriented and students like to explore
them. These types of problems help students understand the importance of math lessons in school and can
motivate them to participate actively in class. The family car topic was even inspired by a student’s conversa-
tion a teacher heard during a break. Moreover, the second and third topics deal with financial literacy issues.
These topics are not just valuable with regard to curricula — they also teach important (financial) lessons that
both students and their parents can use in everyday life. Parents become more interested in what is happening
at school and more specifically in their children’s math lessons. The prospective domestic debate on tanking a
family car or on electricity costs and consumptions can strengthen the relationship between children and their
parents while fostering a sense of shared responsibility for family finances.

On the other hand, future designers, builders and engineers must be good in geometry and highly skilled and
experienced in working with computers. The same is true for their teachers. That is the reason why we use SMEC
as a basis for creating and testing complex IBME projects focused on ICT and geometry issues. One of these is
the project “Can you fairly share a Coke with a friend? — Estimates and calculations of volume ratios of a cone”.

For details see 20,
—— \
J

Conclusion: We strongly recommend the inclusion of secondary vocational schools into the IBME implementa-
tion process.

r
A FRAGMENT FROM THE "CONE PROJECT"
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Which of these cones contains more water?

N
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4.3 IBME in teaching and learning financial literacy topics
— selected teaching methods for financial education

Roman Hasek, Vladimira Petraskova

4.3.1 Introduction

Financial issues provide many opportunities to practice methods of inquiry-based mathematics education
(IBME). Selected examples classified according to the teaching methods used, e.g. the problem, situation or
project method, will be presented. The article is supplemented by the financial literacy learning environments;
student worksheets plus methodological comments for teachers, created within the Fibonacci project.

Itis necessary to acquire some knowledge and skills for a person to be able to handle his or her money responsibly
and wisely. We talk about the improvement of the financial literacy of a consumer. The educational system of a
country plays a crucial role in this process, especially in the case of children and young people. Concretely, the
incorporation of financial issues in curricula at all levels in schools and the educational methods that are used
within their teaching. The following text is devoted to the introduction of selected teaching methods that are
based on the techniques of IBME and are, as we have experienced, eminently suitable for application in the
process of improving financial literacy. The specific application of these methods in the teaching of financial
issues will be demonstrated in particular examples.

4.3.2 A teaching method

A teaching method can be defined as an organized system of the teaching activities of the teacher and the
learning activities of pupils or students destined for the achievement of the given educational objectives?’.

The aim of the teaching methods is to provide students with the respective knowledge and skills in an appro-
priate way and to enable them to recognize and understand the reality surrounding them 27.

The teaching methods are closely connected to the content and objectives of a particular phase of the educa-
tional process. No universal teaching method exists that is suitable for all educational objectives. On the other
hand, itis not generally possible to reduce the effect of a particular method to only one specific topic or subject.
In most cases we deal with applications of generally defined methods within the particular instructional situa-
tions with concretely fixed educational objectives. This is also the case in financial education.

4.3.3 Classification of teaching methods

Various criteria to classify teaching methods can be found in specialized didactic literature. For example, the
teaching methods are classified according to

= the logical procedures being applied,

= phases of the instructional process,

= |level of the activity and the application of the heuristic techniques (i.e. the use of the activating and
constructivist approach to learning 2° within the instructional process.

In this text we are going to follow the classification of the educational methods of Mariak and Svec 27, which suitably
combine the above mentioned approaches. They distinguish over twenty teaching methods that are divided into the
three main groups of classical, activating and complex teaching methods, according to the growing complexity of
the educational bonds that are created through them. Many methods have their place in financial education but in
this article we will focus only on the selected three methods that are, as we have experienced, crucial to the applica-
tion of the IBME approach to the teaching of financial issues. They are the problem and situation methods belonging
to the class of activating methods and the project method which belongs to the class of complex teaching methods.
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4.3.4 Problem-based teaching method

4.3.4.1 Heuristics methods

Heuristic methods are based on the active approach of pupils to the gaining of new knowledge. Compared to
traditional lectures the teacher does not disseminate information directly but rather guides pupils to discover
and learn new information for themselves. The teacher acts as a facilitator of learning. He or she guides his or
her students and helps or advises them if necessary in their search for knowledge. The teacher:

= Asks questions.
= Points out various contradictions and problems.
= Introduces students to interesting cases and situations.

For the successful application of the heuristics methods in education the thorough preparation of a lesson and
the professional qualities of the teacher are crucial. The topic and the course of a lesson must be connected
to the knowledge and skills that students have already acquired. The objective of the lesson must be clearly
stated and must be on a par with the pupils’ abilities. The teacher must be so familiarized with the topic and
with the abilities of the pupils that he or she is able to steer the course of a lesson to the given objective. When
considering the application of heuristics methods a teacher should also bear in mind the time consumption of
this method. As with any other, this method is not universal. Some knowledge cannot be acquired through the
application of the heuristic method.

4.3.4.2 Problem solving

The method of problem solving, the problem-based teaching, is regarded as the most effective and the most
carefully developed heuristic method. One of the educators who first applied this method in school was the
American psychologist and educator John Dewey 22.

The leading notion of this educational method is the “problem”. Wincenty Okori 2 understands the “problem”
as a theoretical or practical difficulty that a pupil must solve by means of thought and active inquiry.

Example No. 1: “A personal and a family budget. Financial planning.”

The use of the problem method will be presented by means of an outline of a model lesson block aimed at a
personal and a family budget.

EDUCATIONAL OBJECTIVE OF THE LESSON BLOCK

A student should be able to draw up a personal or a family budget. In the case of a budget deficit he or she
should know what measures to offerin order to eliminate it. Conversely, in the case of a surplus budget he or she
should know how to manage the free financial resources.

PHASES OF THE LESSON BLOCK

l. Review

Students are already able to distinguish reqular and irregular incomes and expenditures as well as incomes that
are fixed, controllable or superfluous. They know how to draw up a personal and a family budget and they are
able to determine the type of the budget. They are oriented in the basic financial products that are designed

on the one hand for the investment of surplus money and on the other hand for acquiring additional financial
resources.
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Il. Exposure to the subject matter

The teacher introduces students to the notions “property and undertakings of a household”, “personal financial
and real assets”. He or she presents these notions in connection with the drawing up of a family budget and the
determination of its type and presents sample solution to the following concrete examples corresponding to this
topic.

~

INTRODUCTION EXAMPLE 1: Financial situation of a family

Mr. and Mrs. Novdk and their 12 years old child live in a flat that is part of their personal property. The actual
market price of the flat is of 1,750,000 CZK. To purchase it they used their small savings together with a
mortgage credit of 1,400,000 CZK taken out five years ago. The actual amount of their mortgage debt is
1,159,900 CZK. To purchase part of the flat’s furnishings to the value of 45,000 CZK they used an installment
plan with a pay-back period of 3 years. Their present debt is 23,400 CZK. After subtraction of all expendi-
tures the Novdk family has a stable amount of free financial resources of around 17,000 CZK in their current
account. Other free financial resources rest in term deposit with a three month period of notice (150,000 CZK)
and in a saving account (50,000 CZK). The Novak family has a car with the market value of 200,000 CZK. To
buy it they used a consumer credit with a pay-back period of 5 years. The present debt is 187,000 CZK. The
remaining family’s personal property (jewellery, electronics etc.) has value of about 150,000 CZK.

a) What is the financial situation of the Novak family? Decide whether they are overextended or whether they
would be able to immediately repay all their financial debts.

b) Determine the personal financial and real assets of the Novdk family.

J

Solution
We give only brief answers here, leaving the detailed solution to the reader:

Ad a. The Novak family would not be indebted if they sold all their property. They would still have about
1,000,000 CZK.

Ad b. Personal financial assets: The interest from the money in their accounts adds to the family budget.
Personal real assets: Flat, furnishing and car.

~

INTRODUCTION EXAMPLE 2: Family budget

Mr. Novdk is a shift worker at a machine-building plant with a monthly net income of 25,000 CZK and
Mrs. Novdk is a teacher at a basic school with a monthly net income of 18,000 CZK. Besides their salaries
they get interest of 240 CZK from their savings account every month. They have got no other income.

The Novdk family has the following monthly expenses:

Cost of housing (repair fund, advance on electricity, gas and water): 6,000 CZK; food: 10,000 CZK; drug-
store: 850 CZK; car expenses: 1,000 CZK; telephone and Internet: 1,800 CZK; transport to work and school:
800 CZK; entertainment and culture: 1,500 CZK; clothes: 2,000 CZK; mortgage credit installment: 8,932 CZK;
consumer credit installment: 7,609 CZK, installment to a consumer finance provider: 1,800 CZK.

Determine the type of budget of the Novdk family. In the case of a deficit budget suggest measures to balance
it. In the case of a balanced budget suggest measures to change it into a surplus budget. In the case of surplus
budget decide on an investment for the free financial resources.

_ J
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Solution

The teacher draws up the Novak family monthly budget together with students. They record it into the following

table (all amounts are given in CZK):

Net incomes Expenses

Mr. Novak 25,000 Housing 6,000

Mrs. Novak 18,000 Food 10,000

Interest 240 Drugstore 850
Car expenses 1,000
Telephone, Internet 1,800
Entertainment and culture 1,500
Transport 800
Clothes 2,000
Mortgage credit installment 8,932
Consumer credit installment 7,609
Installment to a consumer finance provider 1,800

Total 43,240 CZK | Total 42,291 CZK

Then they can collectively arrive at the following conclusion: The Novak family manages its finance with a
surplus budget. The surplus amounts to 43,240 CZK — 42,291 CZK = 949 CZK. The surplus of 949 CZK per month
looks rather small but the annual total surplus of 11,388 CZK represents a respectable amount that can be
used, for example, to cover the family’s domestic holiday. For this reason we would advise the Novak family to
take advantage of a savings account, preferably linked to their current account, to accumulate and also slightly

increase the value of their surplus money.

lll. Problem solving

The teacher assigns the following problems:

PROBLEM 1: Financial planning

Solution

Mr. and Mrs. Novadk supposed that their child, now aged 12, will enter university in about seven years’time.
They estimate the monthly study expenses at about 10,000 CZK. Moreover they expect the introduction of
a school fee in the amount of 20,000 CZK per year.

Decide whether the Novak family will have sufficient financial resources to cover the child’s university
study? Use examples 1 and 2 for the assignment.

~

The Novak’s family budget is currently slightly surplus but the annual surplus would not suffice to save enough
money to cover the university study, in spite of having seven years to save (the annual surplus amounts to
12 ¢ 949 = 11,388 CZK). The expenses would be approximately 5 ¢ 120,000 CZK = 600,000 CZK (presuming
5 years of study, each study year having 10 months).
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The solution of the problem can be split into the following four partial problems:

PROBLEM 1 - Partial problem 1: Search for budget reserves

Find reserves in the Novak’s family budget. Suggest possible ways as to how they can attain sufficient free
financial resources.

The task of finding reserves in the budget is discussed with students. This discussion can produce various sugges-
tions, with the following being the most likely:

a. Reduction of the monthly expenses (telephone, clothes, entertainment, ...).

b. More effective ways of increasing the value of financial assets (savings account, term deposit).

c. Counting on the diminishing of the family’s financial undertakings in the future.

d. Increasing of the family’s incomes (e.g. change of job, subsidiary income, work advancement etc.).

Let us inspect the efficiencies of these measures (figures given in the item “a” arose from the students’ discussion).

Ad a. The monthly expenses could maximally be reduced by approximately 2,300 CZK as follows: telephone
and Internet from 1,800 CZK to 1,300 CZK, car expenses from 1,000 CZK to 700 CZK, entertainment
from 1,500 CZK to 1,000 CZK, clothes from 2,000 CZK to 1,500 CZK and food from 10,000 CZK to
9,500 CZK. Such reductions would bring savings of 193,200 CZK over seven years. This amount would
cover two years of university study.

Ad b.Now, the interest from the money in the Novaks' saving account and term deposit would bring them
20,160 CZK over seven years. This is not very much. They could try to invest their free financial assets
more effectively in some long-term saving. They should respect the recommendation to keep a finan-
cial reserve of at least three monthly expenditures accessible. For the Novak family this is around
3 ¢ 42,291 CZK = 126,873 CZK. Therefore they could invest only about 100,000 CZK (rounded result
of the difference between 217,000 CZK and 126,873 CZK, where 217,000 CZK is the total of all their
financial assets) in the long-term. Unfortunately it is not feasible to attain a sixfold bigger appreciation
of this amount.

Ad c. Detailed inspection of the structure of the family’s financial undertakings will reveal the following
facts: the mortgage credit will be paid back over 15 years, the consumer credit over 2 years and
4 months and the installments to a consumer finance provider will be paid over 13 months. Because
the Novaks’ children will enter university in about seven years’ time they should count on the surpluses
appearing after the repayment of the consumer credit and the installment plan. These will bring
5e127,609CZK = 456,540 CZK and 6 ® 12 » 1,800 CZK = 129,600 CZK, respectively. Then the total
surplus of 586,140 CZK will cover almost all study costs. Moreover if the Novaks continue saving in
this way during their child’s studies they will get other funds in the amount of 5 ¢ 12 ¢ 7,609 CZK +
512¢1,800CZK = 456,540 CZK + 108,000 CZK = 564,540 CZK.

Ad d.ltis almost impossible to find a better paid job owing to the current state of the labor market. Also the
possibility of getting a well paid subsidiary job is almost zero. Advancements in jobs are unrealistic

because of Mr. and Mrs. Novak's professions.

Conclusion: The measure “c” offers an optimum way of finding financial reserves by counting on finishing some
of the financial undertakings before the start of the Novak child’s studies.
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A wise person cares about increasing the value of his or her financial reserves. Students are already informed
about the basic financial products that are designed for the investment of surplus money. Now they should
consider their use to increase the value of the Novaks’ financial reserve.

solving.

PROBLEM 1 - Partial problem 2: Increasing the value of financial reserves

Consider the use of basic financial products that are designed for the investment of surplus money to
increase the value of the Novdks’ financial reserve which was recognized during the preceding problem

In the following table we can see various students’ suggestions for increasing the Novéks’ financial reserve.

Financial product

Advantages

Disadvantages

Building society
account

Full insurance of an accountup to a
deposit of 100,000 EUR.

State support of up to 2,000 CZK per
year.

The annual interest rate is between 2 %
and 2.5 % (including the state support).
Savings are not tied to any specific
purpose, i.e. building.

= Deposited money is inaccessible for

6 years if we want to get the state
support.

Interest from both deposit and state
support is taxed at 15 %.

It is not the most effective investment
of amounts exceeding 300,000 CZK.

shares for longer than 6 months.
Higher yields are possible.

Unit trust Yields are not taxed if we hold the No insurance of the deposit.
shares for longer than 6 months. Yield usually oscillates. Instead of
Acceptable liquidity. earning we can lose.
Provide the diversification of risk. Various kinds of fees decrease the
Professional management. yield.
Rate of return between 3 % and 9 %.

Securities Yields are not taxed if we hold the No insurance of the deposit.

Considerable loss is possible.
No diversification of risk.

Term deposit,
savings account

Full insurance of an account up to a
deposit of 100,000 EUR.

Money in short-term deposits or
savings accounts is readily accessible.
The annual interest rate between 1 %
and 5 %.

Interest is taxed at 15 %.

Money in medium-term and long-term
deposits is inaccessible for several
years (from 2 to 5 years).

Conclusion: The Novaks' choice depends on their preferences and their inclination to risk. If they
are ‘conservative investors’ they will probably choose between the unit trust, term deposit and the
savings account. If they are so called ‘aggressive investors’ they will supposedly invest in the securities.
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PROBLEM 1 - Partial problem 3: Effect of inflation and financial market changes on savings

Discuss the impact of inflation on savings and also possible changes in the terms of use of the considered
financial products.

Having solved the problem of financial means students should turn their attention to the impact of inflation on
savings and also to possible changes in the terms of use of the considered financial products. For example, the
government is discussing the possibility of tying state support for saving with a building society to be used for
building purposes only.

PROBLEM 1 - Partial problem 4: Securing for the future

The Novadks have not considered any means of securing their financial future for their old age. Discuss the
pension schemes offered in our country and what possibilities there are for a supplemental pension insurance
and a life insurance.

HOMEWORK - Financial plan

Suppose that the Novaks have two children aged 9 and 12 years. Both would like to enter university. The
expected monthly study expenses will be about 10,000 CZK plus a school fee of 20,000 CZK per year. Draw
up a financial plan for the Novdks for the next 15 years. Use previous problems and their solutions for the
assignment.

_ J

4.3.5 Situation method

The subject matter of a situation method is the solution of a problem situation that reflects some real situation
with an unambiguous resolution. Students learn to manage real problems thoughtfully and without difficulty
through this method. Compared to the problem-solving method, which does not reflect the context of a
problem, the situation method is focused on the situation context of a problem. The situation method brings
practical real-world problems to school and strives for their complete solution. Students learn to brainstorm,
argue and defend their opinions through this method.
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Not even this method can avoid necessary simplification and reduction of a situation before its presentation in
the classroom. Moreover the success of the situation method is sensitive to the initial conditions of its applica-
tion. Students must have knowledge and experience adequate to the given situation.

Phases of the situation method application 27

1. The topic selection. It must be in accordance with the objectives of the tuition and must correspond to
the state of preparation of the students.

2. Getting to know materials. Pupils or students should have access to important facts, which are essential
for the solution. They can get the necessary materials themselves.

3. Study the given case (situation). The teacher should introduce students to the given situation, define
the objectives and provide students with advices and directions.

4. Suggestions of solutions, discussion. Pupils or students present their opinions, suggestions and
outlines. The teacher presents them with the reality.

Various types of situation methods are distinguished in specialized literature. For example in 27 the following
four types of the situation method are mentioned: method of a situation analysis, method of a conflict situa-
tion solution, method of an incident and the dynamic situation method. Although each of these methods has
its place in financial education we will illustrate the situation method only through the method of a situation
analysis.

Example No. 2: “Credit card — A typical way to a debt trap”

A credit card itself can be a very effective and helpful payment tool. But we must use it wisely and with full
knowledge of all its pros and cons. This project is inspired by the story of a real consumer.

We will apply the five steps methodical procedure recommended by Mafak and Svec 27:
I. Presentation of the given situation

The teacher introduces students to the situation through the following assignment:

~

INTRODUCTION TO THE SITUATION

A year ago we took advantage of an installment credit company service to buy a mobile phone to the value of
10,500 CZK. The company had just announced the action which offered credit with a zero interest. It means
that we immediately paid 10 % of the phone’s value (1,050 CZK) as an advance payment and then we paid
10 % of the phone’s value, i.e. 1,050 CZK, every month for the next nine months. We paid nothing extra. The
APR (annual percentage rate) was zero percent.

The contract was arranged and signed immediately on site because we had two identification documents,
identity card and driving licence, with us.

After the payment of all installments we mistakenly assumed that the contract was closed. The company got
our personal data and used it to continue in its business. In a couple of weeks we got the following letter from
the installment company that provided the loan enclosing a free use credit card, called the Silver Card.
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What to do?

Simply activate

The Silver credit card was enclosed together with the
'Card holder handbook’, a brochure that contained detailed information as to the use of the card.

N\ J

Il. Obtaining other information

Students have both materials provided by the installment company: the covering letter and the ‘Card holder
handbook’. They have been introduced to the problem of consumer credit and they should understand all
notions given in the brochure. They can also use the internet to find information or to refresh their knowledge.
Students work in small groups in the computer lab at this stage.
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lll. Solution of the given situation

~

TASK 1 - A notebook purchase

You have decided to buy a notebook for 20,000 CZK using the offered Silver Card. How much will you pay for
it finally?

Read the letter from the credit card company again. Do you have enough information to know how much the
notebook will cost? Does the slogan "... any kind of installment buying for up to 40,000 CZK in total already
with a monthly installment rate from 600 CZK” provide you with sufficient information to compute the final
price of the notebook? What extra information do you need to know?

N J

Working with the real materials students will quickly learn how to understand such slogans. They will catch on
to the importance of such words as “up to” and “from” and also the really essential importance of the underline
notes, which are linked by asterisk and mostly typed in small font-size. For example in the case of the above
letter the underline note reveals us the relation between the minimum amount of an installment and the loan
framework (e.g. to the loan framework of 40,000 CZK corresponds the minimum installment 1,600 CZK).

Detailed reading through the ‘Card holder handbook’ should direct students to extra information that is neces-
sary to derive the real final price of the notebook.

We need to know the amount of the administration fees (35 CZK per month) and the annual interest rate of the loan.

A student faces another advertising trick: There is only a monthly interest rate of 2.22 % mentioned in the
brochure. What is the annual percentage rate?

Finally, students will create an installment plan for the loan most convenient for the notebook purchase.

a )

TASK 2 - Installment plan

Create your own installment plan for the loan. Determine the total amount of the loan debt. Use the ‘Card
holder handbook’ to determine the most convenient values of the following parameters:

= loan framework,

= amount of loan,

= interest rate,

= amount of installment.

Find out the influence of the loan framework amount on the final price of the notebook. Create an install-
ment plan with respect to the different loan framework.

Use a spreadsheet = B I - [4] E

or do it by hand. I Masth Amaare It allis o a1 Fws Dalsess
You can follow P o] RLLI ]

the next pattern et 1 L R Fi =hhi

of a spreadsheet f : ‘w :f i--:::::-':f _:'E'ﬂ i :‘ﬁ '::
application. I 5 ¥ SE5S 1117 S50 - wEE.CE

Repeat the computation one month (line) after the other until you get zero or a negative balance.
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Students create several installment plans . I g_ | L - B E I
(to buy the notebook for 20,000 CZK) with 1 Manth  Amaumi  hwislhmesi  Fes  Balance
respect to different initial conditions (loan g1 0O LN
framework and amount of an installment). -I,-- : 1:?""'_'5;;1 :g i :Eﬂ
Their comparison is really informative. — = '
For exampli the installmen}c/ planin Fig. 9 Lo - A A -l o S .
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Compared to the plan corresponding to the loan framework of 20,000 CZK with an installment of 800 CZK which
arrives at the total loan amount of 30,796 CZK.

IV. Analysis of possible variants. Discussion.

Other possibilities to obtain the necessary financial means should be also mentioned. The possible financial
products should be compared and the best one should be selected.

V. Evaluation of results

At the end of the lesson students should be able to describe the function of a credit card, to present its pros and
cons and to compare it to other similar financial products. They should be able to recognize aggressive and false
advertising of financial services provided by both bank and non-bank companies.

They could formulate a conclusion similar to this one: A credit card is like fire — a good servant but a bad master.
A credit card itself can be a very effective and helpful payment tool. But we must use it wisely and with full
knowledge of all its pros and cons (an interest-free period, reduced interest rate, good payment discipline). The
biggest danger of credit cards is hidden in their high (double-digit) annual interest rates and the possibility to
multiply credits on them.

4.3.6 Project method

Project teaching is a structured system of activities for the teacher and his or her pupils or students that are
directed toward the given objectives, educational processes and the concept behind the project. The domi-
nant role within these activities is played by students, with the teacher mainly in the position of an advisor. The
complexity of the project method requires the application of various partial teaching methods and forms of
work 26,

The project teaching method has many features in common with the problem solving method but generally it
works with more complex problems. Its educational aims and objectives have a wider practical range. In most
cases it touches on more subjects. The project method allows the application of various organizational charts
(working in groups, individual assignments, a combination of individual and group work).
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Example No. 3: “"Educational project - Find the most advantageous way to obtain
the financial means to purchase what you desire most”

This project covers the topic ‘consumer loans and their use to purchase consumer goods, relation between the
interest rate and the annual percentage rate (APR)’ that is prescribed in the Czech curriculum document 28 for
secondary school education. It is a short-term project which takes 3 or 4 lessons plus several hours of students’
individual work outside the school. Students from one class or more parallel classes work in groups each having
its own specific task:

~

TASK 1: Obtaining the financial means
Find the most advantageous way to obtain the financial means to purchase:
Group No. 1: mobile phone to the value of 13,500 CZK.

Group No. 2: computer to the value of 23,500 CZK.

Group No. 3: car to the value of 350,000 CZK.

_ J

I. Setting of objectives

Main objective of the project: To gain the knowledge of all advantages and disadvantages of the use of consumer
loans to purchase consumer goods.

Partial objectives: To gain the ability to choose a consumer credit that best fits our personal needs and to be
able to defend this choice. To understand the difference between the interest rate and the annual percentage
rate (APR).

Il. Formulation of the solving plan
Particular steps of the solution to the task are formulated within the brainstorming:

Find out what kinds of loans are intended for the consumer goods purchase.

Find out what institution can provide us with a consumer loan.

Find out what terms of use are required by each of the providers. If possible check their credibility on site.
Compare all recognized offers. Evaluate their advantages and disadvantages.

Select a loan product that would best correspond to our requirements.

Process the acquired information, present it and justify the choice of the best loan.

ounkFwnNE

lll. Realization of the plan

In the first three lessons students use the Internet and other resources (bank leaflets, textbooks) to find out the
following information:

* Types of loans:
= short-term (up to 1 year) — current account, credit card
= middle-term (1 -5 years) — consumer credits, installment plan, leasing

= long-term (5 and more years) — American mortgage

e Basic characteristics of these types of loan.
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e Institutions that provide consumer loans:

= Banks (current account, credit card, consumer credit, American mortgage)

= Installment companies (credit cards, installment plan, cash loan)

= Leasing companies (leasing, consumer credits, installment plan, credit card)
= Other non-bank companies that offer cash loans

e Terms of use

Students should personally visit or at least phone the concerned companies and check the information provided
by them on the Internet and in their advertising. In some cases they will find that some important information
is not noticeable at first glance.

IV. Assessment

At the end of the project students will prepare a public presentation and rational justification of their choice.
They will present it in front of their schoolmates or, even better, in front of the whole school with their parents
as guests.

Students participating in the project are brought closer to practical finance and gain important knowledge
about consumer loans.

Another project focused on the consumer loan, this time intended for the buying of a tumble dryer, is presented
in detail by Hasek and Petraskova 2“.

Conclusion

In this article the authors laid out their experience in the application to financial education selected teaching
methods that are based on the techniques of inquiry-based mathematics education (IBME). They presented
three particular examples related to their practice as teacher educators and consultants. Other authors’ ideas
dealing with financial education at basic and secondary schools, together with particular examples are also
presented by Hadek and Petraskova 23: 24 30, 31,

4.4 IBME in primary schools in Bulgaria: Some examples
of dynamic scenarios and their implementationin a
class setting

Toni Chehlarova

4.4.1 Counting rectangles

One of the fundamental goals of the mathematics education in the primary school is to build skills for identi-
fication of the figures being studied. When the specific figures intersect the problem of identification is more
complicated. Here are some examples.
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Example 1: e 1
-_

Count the number of:

a) squares;
b) rectangles.

Use the auxiliary green figures. Use the slider
for another example. Create your own problem. | —_— s

Only a few of the pupils can solve the problem on their own; but after the first example is discussed with the
class the number of those who can deal with more complex problems of this kind is significantly larger. The
children observe the figures and try to reach a complete solution. This is the reason that problems of this kind
are typically used for identification of young mathematical talents, but it could also enhance the cognitive deve-
lopment of all students.

In Example 1 the key pointin task a) is to see the “big” square. With a dynamic model the children have a dynamic
square and a dynamic rectangle as auxiliary tools, i.e. they could move them and change their size, a property
which is especially useful for the next examples of figures.

In task b) the students have to figure out that the square is also a rectangle and therefore the solutions of a) are
also solutions of b).

The solution could be presented in various manners, e.g.: four 1x1 squares, one 2x2 square, two 2x1 rectangles,
and two 1x2 rectangles (Fig. 11).

Another way is to denote the unite squares by numbers, letters, or both numbers and letters as in chess. If we
use numbers the description of the solution as illustrated in Fig. 11 would be as follows: 1, 2, 4, 3,1234, 12, 34,
13, 24. If the chess tradition is used, then the same solution would be presented as: a2; b2; bl; al; al,a2,bl,b2;
a2,b2; al,bl; al,a2; bl,b2.
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An additional moral of considering this problem is to follow a strategy facilitating the exhaustion of all cases. In
our case we have counted first the squares, starting with the unit ones, then with the 2 x 2 ones. Next we count
the rectangles which are not squares, by starting first with the 2x1 ones, and then —the 1 x 2 ones.

Another approach would be to start the counting with a unit square and exhausting all its appearances as a part
of rectangles. Then — to continue with the next unit while neglecting the rectangles containing already used
squares (thought of as crossed out).

The next examples of the problem deal with augmenting the number of the unit squares, but our experience
shows that it is sufficient to count the rectangles in a 3 x 3 square and only when necessary to go back to simpler
cases.

The next group of problems is suitable for the mathematically gifted students, viz. to look for patterns in the
number of different groups of rectangles when considering sequences of figures as the ones below (Fig 12):

4 )

Example 2: -

n'gﬁ ]
Count the rectangles which are half purple.
Move the slider for another example.
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The virtual dynamic environment provides a natural way for demonstrating the solutions by means of the
auxiliary green figure:

L] L o L o

A possible preliminary step is to figure out that if we are looking for half purple figures it is sufficient to consider
the rectangles with an even number of unit squares.

\
Example 3: ? ifp—
Count the squares with vertices - - -
being some of the dots:
L W L J
Get another example by means of the slider. ™ w &
NS J

A new idea here is the square with a diagonal of a 2 units length, and other “rotated” squares as shown in the
figure below (Fig. 16).

One could solve the problem in several different ways. Making use of the previous problem we could consider
here only the “rotated” segments. It is easy to reach these squares by means of the auxiliary dynamic square.

Let us remind that according to the current curriculum of the Bulgarian school system it is after the 7" grade
when the students will prove their results. Here they are expected to develop their intuition and imagination. Of
course, they could argue their findings by using the diagonals of congruent rectangles but this would be again
based on their intuitive understanding of congruence by imposing one object on another.
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Some puzzles of the ancient times enjoy their being widely spread today thanks to the simplicity of the formu-
lation and the insight needed for solving them.

Such problems could be considered as backbones of ideas, methods, and theories in mathematics whose intro-
duction in the education would reveal the real nature of mathematics as a science.

4 )
Example 4: = . -

Move two matches so as to get 4 squares.

How many solutions did you find? " . - -
\_ J

It is important to introduce certain order in the reasoning according to a specific feature, to apply various
methods, to shorten the number of checks, etc. in order to find all the solutions for a reasonable time.

Some typical mistakes we have come across for students were
to neglect the whole figure when counting. Similarly, when
solving the problem Count the rectangles whose colored part
is more than the half the students had not included the fully
colored figures.

= “Is I "l -

A common feature of considered problems is that they provide a good ground for accumulating basic ideas and
methods in mathematics (e.g. symmetry, parity, analogy) enabling to reduce the time for reasoning. Further-
more, when solving them the students acquire skills of observing, concentrating on a specific object, describing
and representing their solutions in various ways — all these being crucial features in the inquiry based learning.

4.4.2 Explorations with a virtual analogue clock

As early as the beginning of the 20th century research has shown that children’s concept of time is complex and
therefore difficult to teach 3. This is the reason that clock reading is considered a key time-related subject that
plays a role in nearly every grade of primary school.

As discussed in 3* clock reading builds upon mathematical, visuospatial and linguistic sub-competences and
requires the development of cognitive-conceptual representations. Furthermore, clock reading is discussed
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as skill in primary education that mirrors the complexity of time conceptions in general, and thus should be
addressed explicitly, and taught in a systematic way.

With this idea in mind we developed a dynamic learning environment in support of the time telling published
within the Fibonacci resources of the Bulgarian team 3°.

The first who reported of having used the virtual models to teach the children how to tell the time by means of
the “clock with hands” were some parents and grandparents.

Additional advantages to this obvious use though include the development of the space intelligence, intuition,
resourcefulness and quickness of mind which we would like to discuss below.

The dynamic models are developed with precision of an hour, half an hour, 15 min, 5 min, 1 min., and 1 sec.

Here are some examples of problems from the Dynamic Clock scenario:

(Example il T - ’

Look at the clock and tell the time.

Hide the answer and move the slider
for another problem.

- J

The emphasis is on the fact that with the analogue clocks the a.m. (before midday) and the p.m. (after midday)
periods are depicted the same way. Therefore the answer which appears after a click on the check box contains
the two options. It is appropriate to discuss with the students various ways of reading the time depending on
the specific cultures.

For some students this might be the first meeting with a Geogebra-based dynamic environment. If needed the
work with the slider and the check box is explained. The proposed applets could be used for self-evaluation as

well as for a team work or a competition.

The next problems deal with fixing the hour- and the minute hand so as to match a given time.

exarple 2 )
xample 2:
T =

Move the red hands so that the ¥
clock shows 13:15.

Hide the answer and move the slider
for another example.
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Let us note that we do not expect the young children to calculate the angle of rotation, but to give just an
approximate position of the hand.

The next problems could be solved by means of calculations or visually — the children should be able to use both
methods.

N
Example 3:
I
a. Itis now 7 h 30 min. In how many minutes will the time be 8 h 45 min? % i
b. Itis now 14 h 15 min. How many minutes ago was it 12 h 30 min? ! Z
c. Itis now 8 h 45 min. In what time it will be 12 h 30 min? P =
| 5
|
N J

Some problems deal with a clock face lacking the digits of some hours (as it is sometimes the case in reality):

[ )
Example 4: T =

What is the time on this clock?
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The virtual clocks are suitable for solving (or checking the solution of) problems of the following kind:

( )

Example 5: T

5.1 What angle (in degrees) will the minute hand describe in:

a) I5min b) 30min ¢) 5min d) 20 min ?

5.2 What angle (in degrees) will the minute hand describe in:

a) 3hours b) 1hour «¢) 5hours d) 30 min?

5.3 In how many minutes will the minute hand describe:
a) 60° b) 15° ¢) 90° d) 6°?

5.4 In how many hours will the hour hand describe: -

a) 30° b) 120° c) 180° d) 15°?

5.5 The minute hand describes for 17 min an angle which is:

a) right b) acute c) obtuse.

N\ J

A set of problems with maladjusted clocks are presented in 3¢ and some of them could be found in 37. Here are
some examples.

(- )
Example 6:
6.1 The first clock is forward by 5 min.
How many minutes behind
is the second clock?
6.2 The two clocks below are working normally
but are not adjusted properly. The first one
is forward by 10 min. What will be the right
time when the second one shows 5 h?
J
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By solving such problems the students are prepared for the next step —to figure out how many times in twenty-
four hours the hour- and the minute hands are perpendicular.

As seen of the presented scenario fragments a variety of mathematical knowledge and skills is required so that
the students are able to tell the time: (i) a number sense and the ability to count; (ii) a basic understanding of
fractions to appreciate the division of the clock face; (iii) adding and subtracting skills for measuring time-inter-
vals.

In addition, various mathematics problems could be formulated in the context of the time telling that are both
intriguing and close to the students’ reality.

4.5 IBME in the secondary school:
Overview and examples in a Bulgarian context

Toni Chehlarova, Evgenia Sendova

4.5.1 Overview —the lessons from the first IBME & ICT attempts 25 years ago

The development of digital technologies presents mathematics educators with real challenges in spite of the
long traditions of teaching mathematics. One of the major problems is how to create a class culture integrating
these technologies so that the students could behave like working mathematicians, i.e. play with mathematical
ideas and communicate their findings. To create such a class culture by designing and developing computer
environments of exploratory type, and then experiment with new principles of teaching has been the goal of a
long-term research in Bulgaria dating from the early 80's.

The first attempts are related with the Research Group on Education (RGE) — having carried out an educational
experiment launched by the Bulgarian Academy of Sciences and the Ministry of Education in 1979 3% 3°_ It
comprised 29 pilot schools (2 % of the Bulgarian K-12 schools) and its main goal was to develop a new curri-
culum designed to make the use of computers one of its natural components. The guiding principles of RGE
were learning by doing, guided discovery, and integrated school subjects. The experiment ran for 12 years.

It was in the frames of the RGE experiment that a team mentored by Bojidar Sendov comprising graduate
students from the Faculty of Mathematics and Informatics at Sofia University (with Rossen Filimonov and Georgi
Georgiev as principal developers) had been developing and experimenting since 1986 with the Plane Geometry
System (or Geomland). This system represents a mathematical laboratory “% “* enabling pupils to construct
and experiment with Euclidean objects, to investigate their properties, to formulate and verify conjectures, i.e.
to discover mathematics. Geomland proved to be an appropriate environment for materializing the abstract
mathematical concepts. Bridging the gap between the real world and the abstract world of mathematics by
providing the flexibility of experimenting with materialized abstraction helped the learners move fluently in
both directions along the path, as needed.

Our experience in integrating Geomland into the mathematics classes “2 ~ %7 has shown that it is possible to
adopt the style of “discovery learning” - a style tuned to the natural wishes of pupils. They got the feeling of
becoming contributors to the establishment of mathematical facts. Furthermore, they mastered their mathe-
matical language “¢, since a precise formulation was necessary to make their definitions and solutions workable.
With clever guidance, pupils looked for patterns, formulated hypotheses, posed problems and were highly
motivated to prove their own theorems.
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The teachers involved in the pilot RGE experiments got convinced that to teach guessing and conjecturing is
vital for conveying the real spirit of mathematics in a school setting. Furthermore, some of them gained a suffi-
cient self-confidence to adopt the role of researchers — they created whole classes of mathematical problems
that were new to the existing curriculum. Before proving their hypotheses they verified them with Geomland
and investigated various extensions of the initial problems.

The positive results of the RGE experiment were later transferred to the university level — since 1989 the tradi-
tional core of mathematics disciplines taught at the Faculty of Mathematics and Informatics at Sofia University
has been enriched by the course Teaching Mathematics in a Laboratory Type Environment “°.

The mathematics teachers-to-be experienced the real feeling of “doing mathematics”. After years of studying
and reproducing very sophisticated mathematical facts they were put into situations where they could say:
“Look at my construction!”, “Can you prove my theorem?”, “Look at what | got!” Thus, we expected that such a
spirit of discovery would be transferred to their pupils.

Spreading this positive experience on a broader scale turned out to be very difficult at the time for various
reasons —both economic and political. However, even with these isolated experiments the lessons learned were
valuable — the teachers’ creativity can be enhanced when provided with an appropriate environment.

With the advent of powerful modern computers and specially designed educational software for mathematical
experiments a way was opened for the inquiry-based learning in many European countries >°.

The development and the dissemination of dynamic scenarios based on dynamic software in which various
experiments with mathematical objects can be performed is a focal point in the Fibonacci project in a Bulgarian
context >33,

What follows is an excerpt of Fibonacci dynamic scenarios and theirimplementations in a class setting. The focus
is again on putting the learners in the role of investigators who are expected to explore the dynamic construc-
tions, to formulate conjectures and possibly —to prove them as theorems of their own.

4.5.2 Best practices in designing dynamic scenarios and implementing them in
Bulgarian Fibonacci schools

4.5.2.1 Experiments with compositions of geometric congruencies

The topic of geometric congruencies (translation, rotation and reflection) is an element of the compulsory
mathematics education and is taught in the 8" grade of the Bulgarian schools. An inquiry based approach of
learning this topic by experiments with dynamic constructions is presented in °* as part of the resources of the
Bulgarian site of the Fibonacci project. This approach allows to introduce (in the elective classes) compositions
of congruencies and to emphasize on some group properties of these transformations °°.

The notion of a composition of two congruencies E, and E, isintroduced and denoted by E, ° E, and interpreted
as E, applied after E, . \We use the existing buttons in GeoGebra for constructing the images of a geometric
object under translation T, central symmetry C_, reflection S, and rotation Ry . In order to explore the
composition of two translations we construct the image f” of the object f under translation by @ and then f”
of f” under translation by ¥, denoted by f”= T, T,(f).

We draw the attention of the students that T, ° T, means that first the transformation T, is performed after
which the image undergoes the transformation T,.The students are investigating the conditions under which f
and f” coincide; what happens if the vectors are parallel, what the result would be if first a translation by v, and
then by & is performed. Considering some special cases and special conditions is an essential part of the experi-
ments. To provoke the intuition of the students and to form the necessary skills for looking for such conditions
and cases are important tasks for the teachers.
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- I _i:‘:.__. Changing the order of the vectors does not influence the result

so the students would conjecture that T,oT, = T,oT,, ie. that
the composition of two translations is commutative. In addi-
s T tion, the transformation under which f” is the image of f is
again a translation with a vector equal to the sum of & and V.
The proof of these two conjectures is accessible for the students.

This raises new questions:
Is it true that the composition of two congruencies is commutative for all the congruencies?

Is the composition of two specific congruencies a congruence of the same type?

It is easy to see that the composition of two reflections is not a reflection. This could be done by finding a
counterexample or by changing the orientation of the figures.
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Some interesting cases of compositions of two rotations are the ones with a common center, as well as some
special sums of angles. The students can establish that the composition of two rotations is not commutative in
general but the composition of two rotations with a common center is.

Here is the natural place to give the students the task of modeling objects of art, architecture, museum artifacts
based on rotational symmetry —e. g. ceramic plates, wood carved ornaments, church windows, etc. .

Fig. 34 — 37: Objects based on a rotational symmetry
as a suitable source of dynamic models.

To create dynamic models of such rotational objects the students discover
the relation between the angle of rotation and the number of the rotations
in the composition leading to a total turn of 360° (Fig. 38 —39).

Fig. 38 — 39: Investigating a com-
position of rotations i =

1 ;
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Fig. 40 — 43: Rotational objects modeled by students
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When some elements of analytic geometry are studied the compositions of congruencies could be considered
again and the proofs could be done with new means.

After exploring the compositions of congruencies of the same type it is natural to continue with explorations of

compositions of congruencies of different type, e.qg. a reflection and a translation.

First, it is seen that the composition of these two congruencies is a congruence itself.

In the general case the composition of a reflection and a translation is not commutative. The equality
is parallel to the axis [.This is the reason for giving a special name to this
congruence, viz. translational symmetry or gliding reflection.

S,°oT,=T,° S, isreached when
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use pictures as proto-images and to include anima-
tion:

A further step is to consider the composition of ‘-__"—-._.____.
three and more congruencies. It is appropriate to *

S

The work on such a project involves artistic creativity
and could serve as an example of extending the
means of self-expression by applying mathematics
and digital technology.

Presenting congruencies as a composition of two reflections

Let f and f’ be a figure and its image under rotation. We shall try to get f* by making f undergo a composition
of two reflections. The proto-image being A ABC we construct AA’B’C’ by rotating A ABC with center O and
angle @ (Fig. 54). We construct then two lines a and b, theimage A A’ B’,C; of AABC under reflection with
axis a,theimage AHIJI of AA’B’C’, under reflection with axis b (Fig. 55). We try to make AA’B’C’ and A HJI
coincide by moving the lines aand b (Fig. 56) °7.
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The natural question now is

if this is the only possible way to present the rotation as a composition of two reflections,
i.e. if there is another configuration of a and b, in which AA'B'C’' and AHJI coincide.
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Fig. 57 - 59: The rotation as a composition of two reflections

We notice that in both cases a and b meet
at the center of rotation O . To facilitate the
investigation we make a new construction,
in which a and b meet at this center
(Fig. 57 —59).

If we fix @ and move b we notice that the
triangle rotates around O . To illustrate
different positions of A FHG in our new
construction we can make use of the trace
mode option when moving the image of
A A’ B’ C’, under reflection with respect to b
(Fig. 60).

This construction gives the students an idea
how to prove their conjecture that the rota- Fig. 60: Images in the case of fixing the first axis
tion can be presented as a composition of two reflections. of symmetry and changing the other one

Before starting the proof though the students could easily check the result for other angles of rotation by means
of aslider (Fig. 61 + 62). Thus they would verify experimentally their conjecture and would strengthen their intui-
tion about its truth or alternatively, would reject it if finding a counterexample.

Fig. 61 + 62: Verifying the hypothesis with another angle of rotation
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Furthermore, it is worth looking for patterns and relationships by means of the dynamic construction, e.g.
whether there is a relationship between the axes of reflection a and b.To check this the students could observe
the angle between them when AA’B’C’ and A FHG coincide. They should notice that this angle is twice smaller
than the angle of rotation.

It is a good idea to draw the attention of the students not only to the mathematical content in terms of facts,
properties and theorems. It is very important to discuss the process of inquiry, the way of creating special condi-
tions, the formulation of the conjectures and the different levels of experimental verification as well as to the
necessity of a strict proof (see also chapter 3.1 in this volume).

Then we could continue the explorations with more attractive figures:

Problem: |

Transform the following images (Fig. 63 + 64) by means of specific
compositions of reflections and formulate your conjectures:

» )

N J

At the end we would like to share a puzzle presented to us by the Canadian mathematician Andy Liu at the
Congress of the World Federation of National Mathematics Competitions held in Bulgaria in 1994.

|
The puzzle is really challenging and we have given it as a warming up problem or as a mathematical dessert

to students at different age and background, even within the RSl international program for highly achieving
students in mathematics and science (regarding RSl see also Chapter 6.3 in this book):

A challenging puzzle

Problem:

Copy the following 3 images on a trans-
parency and cut them in 3 parts as shown
in Fig. 65. Get 3 riders on 3 horses.

N\
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Different solutions have been suggested (including going in 3D) but
the original one (based on 3-fold rotational symmetry) is breath-
taking with its beauty and elegance. As one of the students pointed
out the problem surely has been inspired by a famous Chinese
painting (Fig. 70).

4.5.2.2 Dynamic tesselations

The tessellations — a special case of wall-papers in which the motifs interlock perfectly to fill the plane without
gaps or overlapping, proved to be an object of exploration with a great appeal to the students. The tasks in the
context of tessellations can be organised so that the students would have to combine mathematics and infor-
matics skills of different levels 2 ~ 61,

To modify a regular polygon tessellating the plane by implementing geometric congruencies so as to obtain

a tile with a new shape is an idea that has been implemented in a Fibonacci dynamic scenario discussed in 2.
Below we present a fragment of this scenario with some comments and impressions of its further development.
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How to transform dynamically a regular hexagon in a new tessellating tile

Let usillustrate the idea of dynamic tessellations
by transforming a hexagon tile in a tessellation
tile of a new shape. We construct the regular
hexagon ABCDEF as a partial case of the regular
polygon tool, select a point G on its side AB
and point M from its inside. We transform the
hexagon by cutting out the triangle GBM and
gluing it to a neighboring side, e.g. BC (Fig.71).
We are using BC with the idea of making the
common vertex B a center of rotation. We then
construct the images of G and M under rotation
with a center B and angle of -120°, connect
them and get a newly shaped tessellation tile.

AT g

Fig. 72: Transforming a regular hexagon in
a newly shaped tessellation tile

Now we could tessellate the plane with this tile by means of the same rotation, and then — by translation (Fig. 72):

Fig. 72: Tessellating the plane with
the new tile by means of a
rotation and a translation

We have hidden some of the points and/or their names for convenience. We could use other ways for connecting
the tiles but it is sufficient to move only G and M to modify the tessellation.

55 A5 #

Fig. 73 — 75: Modifying the tessellations by moving two points only
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The tessellations in Fig. 73 — 75 are a result of moving the point G and M by hand. We could animate the
construction automatically by constructing sliders for the movement of G and M.

The point G is the intersection point of the segment AB and the circle with a center A and aradius r (avariable).
To assure the existence of the point G, the upper limit of r is chosen to be close to (less than) the length of AB.

The point M will also lie on a preliminary constructed object,
dependent on variables. In our case M is an intersection point
of the circle with a center H (the center of the regular hexagon)
and a radius k (a variable), and the second ray of the angle with
avertex H, a measure a (a variable), and a fixed first ray (all the
variables are represented by the sliders in Fig. 76 + 77).

What is left is to hide the auxiliary elements and to run the sliders
in an animation mode.

These are just a few of the possible ways to create a newly
shaped tile by transforming a regular hexagon, to tessellate the
plane with it, and to animate the tessellations. But even they give
an idea how the topic of dynamic tessellations could be used in
support of the inquiry-based learning of mathematics and arts.

Let us remind that creating tile shapes was almost an obsession
with the great Dutch artist M. C. Escher — he would begin with
a simple tile (often a polygon) that he knew would tessellate the
plane, and then painstakingly coax the boundary into a recogni-
zable shape °3. More formally, the tessellation of the plane in the
style of Escher (known also as Escherization) could be formulated
as follows 64:

The Escherization problem
Given a shape S, find a new shape T such that:

= T isas close as possible to S ; and
= Copies of T fit together to form a tiling of the plane.

N J

Playing Escher in a class setting

The whole scenario on dynamic tessellations was presented in a Bulgarian journal in mathematics and infor-
matics with detailed instructions for working in GeoGebra. Ms. Elisaveta Stefanova, a teacher from the 73 High
School Vladislav Gramatik within the Fibonacci project, took the gauntlet and implemented it with 7th-graders
in IT classes. Here is what she shared with us: The students started with the reqular polygons tessellating the plane
and followed the ideas of transforming a tile by means of dynamic constructions as presented in the tessellation
scenario. Soon they realized that they had discovered their own land for explorations — playing in the style of Escher
by adding new points on the initial tessellating tile (square, triangle, hexagon, rhombus) and modifying it under
various congruencies so as to get beautiful tiling shapes (Fig. 78 — 83).
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Fig. 78 — 83: Esherizations by several students, parents and teachers - flowers,
several metamorphoses of animals and a poster: Save the water!

The most interesting part of this learning experience was that it continued after the classes, even after the
school year — the most recent works of the students were sent a day before this material was submitted. In a
recent mail to us Ms. Stefanova wrote about the continuous excitement of her students, their parents, and her
colleagues in mathematics and art:

I realized from the interest of the students that the congruencies are a very attractive topic. Given as in the Fibonacci
project scenario these transformations are not only understandable but very useful for art applications. The students
get the feeling of discoverers and creators, and this is a real thrill for them and the teacher. Learned that way the
congruencies are easy to remember and apply in various situations. | am convinced that every colleague who is
ready to try this will be inspired by our enthusiasm and will implement this approach. Our students deserve that we
make their learning process interesting and appealing to them.

The best works of the students were published on the Fibonacci project website and later presented in the form
of book markers, greeting cards and framed paintings at a seminar within the 41st Spring Conference of the
Union of Bulgarian Mathematicians (Borovets, April 9-12, 2012, see also Chapter 5 of this book).

4.6 IBME in the secondary school:
Examples from Switzerland

4.6.1 On the equilibrium between offer and use — a practical example from a
Swiss Upper Secondary School: The offer-and-use model within the
context of dialogic learning

Peter Gallin

Within the EU-Fibonacci Project, the Swiss Twin Centre (University of Zurich) entirely focussed on inquiry-based
mathematics education (IBME). To this end, dialogic learning was used as a base concept (cf. chapter 2: The
basic patterns of Fibonacci as an overarching concept for successful implementation of IBME in international
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contexts). In the following, a close look at the offer-and-use model shall shed light on the concept of dialogic
learning, which will be underpinned by a practical example taken from our Sekundarstufe Il (upper secondary
level). To this end the dialogic learning cycle (introduced in chapter 2.3) will be divided into two parts: one is
concerned with what the teacher offers, while the other relates to what use the learner makes of this offer,
which is, in fact, the student’s overall responsibility. This kind of view of school in general and classroom lessons
in particular, in which a distinction between offer and use is drawn, originally goes back to Prof. Helmut Fend of
the University of Zurich” and can be flawlessly embedded in the dialogic learning cycle (Fig. 84). Thus, core idea
and task (assignment) construction belong to
the offer that the teacher makes, while keeping
a journal and receiving (or giving) feedback are
entirely centered on the learner’s work responsi-
bilities. Indeed, the student will perform these
activities in the course of working on his tasks.
The norms —i.e. the theories and rules that the
curriculum expects the students to learn — form
the goals of dialogic learning and should, ideally,
result from the fusion of offer and use. Thus, the
norms do not make the starting point but follow
as consequences in later classroom units.

Central to this model is the fact that the quality
of a classroom lesson is at its highest if the time
available is evenly distributed to both parts of
offer and use. This then means that about half
the time should be used in conjunction with the
use-part, i.e. the question how students under-
stand and process the objects they are given
to deal with. This kind of requirement strongly
contrasts with how lessons are taught at most
schools. In fact, this valuable approach is hardly
even treated during vocational teacher training.
Even within the Fibonacci project, what often
seems to be at the centre of investigations is
the quest only to make what the teacher offers more interesting and maybe more closely related to real-life
problems. The phenomenon of putting excessive emphasis on what the teacher can do is widespread since
teachers naturally ask themselves what they can do to improve the situation. However, as it is impossible to
foretell what the students will make of the (improved) offer, the sight of student use is often lost at the plan-
ning stage. Moreover, the fact that student reactions cannot be planned for, and will often vary depending
on the exact circumstances, is a real dilemma for innovative approaches. Then again, a hopefully successful
IBME approach should set out to assume that all results can be foretold by the teacher. If this were possible, it
would invariably imply that there is no room for genuine student inquiry. As a consequence of this, inquiry-based
education is only possible if the emphasis is put on the student’s use of what is offered and if this use makes the
central aspect in the classroom. It goes without saying that this, in turn, presupposes an accordingly stimulating
teacher offer.

Dialogic learning is permeated by journal entries and through it the extent to which a student engages with
the task offered is given the necessary weight. The dialogic approach is, thus, situated somewhere between
instruction and (knowledge self-) construction. At the same time, it takes into account that knowledge transfer
through instruction (offer) is quite effective, but that real learning is a constructive process (use) where self-
motivated learning brings about truly lasting and flexible results.

* For an explanation on the offer-and-use model
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The shift of emphasis towards the aspect of use simultaneously moves the burden away from the teacher: more
than ever, he is now in a position to concentrate on the learning goals set in the curriculum, and does not have
to plan innumerable lessons in advance “. In other words, the offer can be a simple one and, thus, the pressure
exerted by time management issues is greatly reduced. At this point in our paper, another aspect in the discus-
sion revolving around improvement to the classroom needs to be addressed. It is often postulated — by laymen
and professionals alike — that the quality of mathematics lessons can be improved by more frequently relating
the mathematical aspects in question to real-life situations. It is generally felt that only these situations can lead
to successful inquiry-based work. The latest studies in this field contradict this view. In connection with Anna
Susanne Steinweg’s thesis %6 the Madipedia 7 index of the institute for mathematical didactics notes,

The main result of this study is that more than half the participating children were able to recognise and describe
number patterns even though they had not received prior tuition in connection with number patterns at all. When
presenting the tests to these children, the author purposely refrained from setting the patterns into context or
relating them to real life. The circumstance that the children worked on the task with motivation strongly hints
at the fact that mathematics in it pure form is appropriate for children.

Thus, even for children at primary school level, the relation of mathematics (or its absence) to everyday life or
to real-life applications is not a crucial factor when it comes to motivation. What is important, however, is that
the learner is given an adequate period of time to deal with a mathematical topic and that the learner’s effort to
gain insight into such a topic is duly appreciated. In a school class with more than 10 people, this is only possible
if each single student is given adequate space and can voice his thoughts in a learning journal.

Through their study, Deci and Ryan have shown that this procedure influences the learners’ motivation the
most 68 (P- 68 -78) According to the authors, the three basic pillars are “experience of autonomy”, “experience
of social embedding”, and “experience of competence”. Exactly these three experiences are central to Dialogic
Learning: the self is allowed to experience autonomy through the task because it is allowed to give voice to its
thoughts and feelings. Social embedding is created by feeding back authentic student texts to the whole group.
Finally, it is the teacher’s duty to collect and bring together subject theory and insights developed in the student

text in such a manner that the students recognise their input and thus experience competence.

Overall, inquiry-based mathematical education is not primarily connected with a given set of topics. Rather,
it hinges on the way how tasks for students are formulated (offer) and what the students make of them (use).
Through this approach, topics that are ordinarily part of the curriculum can be turned into dialogic learning
tasks. Already after sifting through a first batch of journals, the teacher can see what insights the students have
reached and what problems they have encountered. These aspects can be made essential parts of the next
lesson. As a consequence, lesson planning is facilitated and evenly spread across the whole teaching time and
does not require to be planned weeks ahead.

In preparation for a more demanding example, we introduce our practical example with a simple task that could
not be easier. When teaching children multiplication tables, it is not uncommon to give students a question
that does not lead to an investigation and that can only be answered wrongly or correctly: how much is 49 - 51?
The same question can, however, easily be turned into an inquiry-based task by asking, “Show me how you
calculate 49 - 51 !” It becomes immediately clear that there is no single right answer and that several different
approaches will lead to a fruitful class discussion on how to multiply numbers. This will be the case all the more
if the students are requested to hand in their personal answers in writing through their learning journals.

An actual example from a mathematics course by Bruno Lustenberger

In accordance with the cycle in Fig. 84, inquiry-based mathematical education will be divided into four stages,
which follow the offer-and-use model. These parts together set the minimum that is necessary to show the

* Cf. article by Markus Jetzer-Caversaccio
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strength of an inquiry-based working approach in the school context. The following short overview will illustrate
the equilibrium between the teacher’s offer and the students’ use:

= The students are given a task that is closely linked to a topic set in the curriculum and that allows individual
approaches. (Initial offer)

= The students keep track of their thoughts, problems and findings in their learning journal. (First use)

= The teacher organises an exchange of thoughts among the learners and gives individual feedback on
remarkable insights. (Second offer)

= The teacher collects and re-distributes interesting results as well as findings that allow the group to
continue the investigation. (Second use)

The following example from Bruno Lustenberger’s classroom (Kantonsschule Glattal, Grammar School at
Dubendorf, Switzerland) shows that this approach may, of course, lead to surprising results. His class MN5 (with
an emphasis on mathematics and physics) previously treated a number of arithmetic and geometric sequences
in a traditional way. Let us now take a close look at how the four stages of inquiry-based mathematics education
developed in his class in November 2011.

First offer: the task (assignment)

= Try to define and investigate at least one more type of a sequence.
= [f possible, write down both the recursive and the explicit formula for your sequence(s).
= [llustrate your sequence(s) with examples.

First use: the journal of Abdullah, Ceren and Kevin

The work of Abdullah, Ceren and Kevin is used to represent the great number of contributions that are
exceptionally interesting and that merit a thorough inspection. To start with, the three wrote, “Up to now, we
have always added a fixed number to get to the next term. Now, we will remove the ‘fixed’, and if we do this,
then the sequence of differences between two terms in itself becomes a sequence [an arithmetic sequence].”
They continued to investigate the sequence 1, 2, 4, 7, 11, 16, 22, 29, ... where the terms in the sequence of the
differences are natural numbers. Because they were already familiar with the formula for the series of the first n
natural numbers, they concluded that the explicit formula for their sequence should be

_ n(n-1)
an-a1+T.

After a second but not quite successful example —the sequence of perfect squares —and in order not to become
lost, they turned to a sequence with greater terms and differences (Fig. 85).
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Purely to increase legibility, we here provide a transcript of the students’ approach:

Term a, a, a, a, a, a, a, a,
Term value 8 83 176 287 416 563 728 911
1. seq. of differences 75 93 111 129 147 165 183

2. seq. of differences 18 18 18 18 18 18

With a certain degree of agility, they investigated how a, =416 had developed from the first term a, , the starting
number 75 in the first sequence of differences and the starting number 18 in the second sequence of differences:

93 111 129
—
a =416=8+75+75+18+75+18 +18+75+18+18+18

The students recognised the pattern a,=8+75-(5-1) +18 - (5_1)+_2) , introduced the parameters d =75
and e =18 and concluded that
an=a1+d-(n—1)+e-w

Inspired by their success, they made a forecast (albeit a wrong one to start with) for the next higher stage, i.e. a
sequence where only the 3" sequence of differences would be constant:

(n-1)(n-2) +f- (n-1)(n-2) (n-3)
2 3

a,=a, +d-(n-1)+e-

Fig. 86 shows this extract from their learning journal.

pipssaneall i

h-*d'id'rnl L '::ﬁﬂ p'fﬂ“flf:ﬂnrﬂ |

Fersiie b 5

a, =1 :}“I- -iu,rm.zﬂ'—u-ﬁ IR E T T

“'-I-"ﬂ'.': '1"'"' il:"'l 2353 -ﬂlid'l"l'El:"L Fr";-r"'l_ e,
| AgTaefie Hfﬁ#*:-p-.n-#uﬁr-pm

e <

& g !
" :m‘ | £ 3-‘“'1%-;1“1 J-Iuw ﬁ-
i -I!'i-l-l TV gaim kit

|'.i-| A (M- in-AMn-21 frl-ﬂl!:u-ﬂfﬂi.ll.'l
-'|"-r '! i Ta SR T A TR
Keatrall wsif a4y
T.l-'.,,l_ri.-n-'[ e ——— -
Ter darded £ 'him-iwrﬁ—mﬂ#f’“‘ﬂ“
1',,. w383 vy 2 R T
T b el T e P B, J.ill'-'l Jewady

Bmpay ¢

129



For their example, the three students chose the new sequence

Term a, a, a, a, a, a,
Term value 87 93 113 155 227 337
1. seq. of differences 6 20 42 72 110

2. seq. of differences 14 22 30 38

3. seq. of differences 8 8 8

Once again, they applied their method of back tracing to the first terms of the sequences of differences and
inspected: a, = 227

42 72

20 22 22 30
— — —

as=227=87+6+6+14+6+14+14+8+6+14+14+8+14+8+8

They were only unsure about the number of terms (summands) 8 and so wrote

4. 56-D6-2)

a,=227=87+6-(5-1)+1 3

+8-Term,

where “Term” stands for one of the three expressions

T = (n—1)(n—3),_

(n-1)(n-2) (n-1)(n-2)(n-3)

T 3 3 2-3

Thus, they reached the conclusion that T, had to be the right one, and again they introduced the parameters
d =6, e=14 and f=8.Atthis point, they had reached a general and now correct formula

a,=a, +d-(n-1)+e-

(n-1)(n-2) . (n=1)(n-2)(n-3)
2 +f 2-3

Now, there was no stopping them (Fig. 87). Without knowing the name of their sequence, they successfully put
their formula to the test with an arithmetic 4" order sequence.

a,=a +d-(n-1)+e-

(n-1)(n=2) . ;. ((-1)(1=2)(n=3) . __(n=1)(n=2) (n-3) (n-4)
2 +f 2-3 *9 234
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Second offer: guided reflection and proof by teacher

In the course of their investigation on “self-made sequences”, the three students developed a building principle
for arithmetic sequences of k-th order, which is probably not widely known. In any case, the teacher had to sit
down and verify their hypotheses. Abdullah, Ceren and Kevin proposed that

Z - H (n-j)

where the coefficient A;denotes the first term in the i-th sequence of differences. It should be noted that
1 d n-1
H[To-n= ("7
j=1 !
where any binomial coefficient is zero if i>n—-1. Furthermore, let a, = A, and the students’ statement can be
compacted into
k
n-1
= li ( i )

If we now build the first sequence of differences, we find that

cenrns §1[0)- E16 - EA ()7 £1.2)

131



and through renumbering the summationindexas j=i-1 we obtain

k-1 n-1
dn=an+1_an= Z A’j+1( . )'

j=0 J

This, in turn, is the proposed formula but for an arithmetic sequence of order k — 1, and thus the students’
formula has been proved by induction. It may also be noted that the k-th sequence of differences is the sequence
of constants, which only consists of A4,.

It goes without saying that this proof, especially in its most general form, was not presented in class. While
this would have been beyond the scope of the students, the presentation of select material produced by the
students themselves allowed the teacher to draw attention to core ideas relating to binomial coefficients and
their sums, which already shined through in the students’ table.”

Second use: the continuation of the lesson takes an unplanned turn

With the help of the thus developed formula, students can now and on their own solve a problem that a teacher
usually has to demonstrate in row of laborious calculations or through proof by induction: finding a formula for
the sum of the first n perfect squares. Based on the above tabling structures for sequences and their underlying
sequences of differences, it becomes clear that the series of perfect squares is a 2" order arithmetic sequence
(highlighted in the following table). As a consequence, its partial sums build an arithmetic 3™ order sequence. In
keeping with the above tabling structure, we obtain:

Term a, a, a, a, a, a,

Term value 1 5 14 30 55 91
2. seq. of differences 5 7 9 11

3. seq. of differences 2 2 2

Thus,a,=1,d=4,e=5 and f=2, and for the general term of this 3" order sequence we find

a,=1+4-(n-1)+5. 00022, 5 =D O-20=3)

A simple term manipulation results in the well-known formula for the sum of the first n perfect squares:

3 2 _
a=”_+i+ﬂ="(" 1) (2n+1)
3 2 6 6

* Holger Stephan deals with the same insight that the students Abdullah, Ceren and Kevin had.
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This now opens the flood gates for formulae for series of natural numbers with higher exponents. From the
respective table for the 1% sequence of differences 8, 27, 64, 125. ... (which the reader may do himself) follows

that
i3=1- n-1 +8- n-1 +19- n-1 +18 - n-1 +6- n-1 =n2(n+1)2
i=1 0 1 2 3 4 4

Conclusion

Inquiry-based mathematical education (IBME) can start with elementary questions, will often take an unplanned
turn, may lead to a subject-related in-depth discussion, and enables the learner to gain insight into the methods
and thinking of co-students.

4.6.2 Dialogic Learning:
An example from a classroom situation at lower secondary school level

Pyramids Markus Jetzer-Caversaccio

Introduction

The following classroom example is from
a year-9 group of students within an
extended study module, i.e. the highest
level at lower secondary school in the
canton of Zurich. This group (Fig. 88)
has studied all geometrical topics of our
curriculum through dialogic learning.
“Pyramids” was the first topic, but the
students had already received instruc-
tions into how to deal with dialogic
learningtasks for parts of arithmetics and
algebra. Thus, they had already gathered
experience with this type of learning,
particularly with writing journals.

Core idea and start of the journey

Before | set a task, | reflect on why a certain topic fascinates me, what catches my attention or what surprises
me. The thoughts are jotted down and | try to work out a suitable task for the start of a student’s journey into
the area connected with the topic. For pyramids, | came up with: “l am fascinated by the variety of pyramids. The
mathematical definition differs completely from the intuitive 4-sided right pyramid.”

The students received the following instructions and were given 45 minutes to work on the task and keep track
of their working in their journals (Fig. 89).
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= Given a piece of paper (DIN A3: 297mm x 420mm), scissors and glue,

construct the biggest pyramid possible.

= Write down your thoughts and keep track of your way of working in your journal.

= Write down your personal definition of a pyramid.

Fig. 89: The journal

The deliberate openness of the task resulted
in a great variety of pyramids (Fig. 90).

| collected all the journals and viewed them.
From the students’ texts, | distilled a text
collection, which | handed out to the whole
group. In the follow-up lesson, the authors
of these texts, i.e. the students themselves,
presented their contributions, discussed and
analysed them with their peer group. As anti-
cipated, the first sub-topic that automatically
came up was “nets”. The collection of texts
(Fig. 91) also gave rise to a debate about flaps
to glue to the pyramid and how to draw nets.

Fig. go: A great variety of pyramids

Josua drew unnecessarily many flaps, noticed it and then shaded the superfluous ones. The group quickly
discussed his technique, which required paper and glue. Another student proposed a version with adhesive tape
in order to save paper. However, many students were against the idea as the pyramid did not look nice and

turned out to be unstable.

Christian and Steven sketched two variants of pyramid nets. Interestingly, their versions coincided with the
ordinary nets that would have been in our text book. A question dealing with the number of different nets that
all describe the same four-sided right pyramid seemed to be the next obvious choice, and this led to the next

student task.
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Fig. 91: Worksheet “pyramid” — Collection of student texts

The students handed in an amazing number of ideas. The following shows Michele’s sketches (Fig. 94).

Fig. 92: Michele's sketches
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Maren, too, had sketched several versions (Fig. 93).
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The variety of sketches led to an intense discussion about what characterises a net. So far, there had been no
need to define the term. Now, however, the moment had arrived, where it had become necessary to find a
definition in order to tell which sketches constituted nets. The group immediately realised that if all of Maren's
sketches represented nets, then it was impossible to sketch all versions of nets for a four-sided right pyramid.

The students looked up the definition, and soon enough found themselves confronted with a topic called
topology. They found “weird” nets for our pyramid, even ones that led to pyramids that were impossible to
build. Surprisingly, however, the given definition did not match any of our shapes. The surprise was big and the
new challenge even bigger!

The Journey
During our entire journey through this particular part of geometry, we had always aimed at producing the

greatest pyramid and at awarding a price to its constructor. We came across a whole range of topics in connec-
tion with our quest. The following list shows a few excerpts from student journals:

136



Example 1: A connection between the base area and the lateral area of a pyramid

Pavao wrote (Fig. 94): “Initially, | wanted to produce a pyramid of this kind. However, | was unsure about the size
of the square base.” Pavao's question concerning the relationship between base area and lateral area seemed
relevant to me and so | passed his question on to his peers.
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Fig. 94: Base area of a pyramid

Investigate the relationship between the base area, here a square, and the lateral area
consisting of triangles. Answer Pavao’s question and find out what the net needs to
look like so that it represents a pyramid.

Michele came up with a
highly dynamic answer
(Fig. 95).

The  presentation  of
Michele’s answer reig-
nited the question
concerning the smallest
and the greatest pyramid.
Obviously, it was possible
to change the size of the
pyramid by changing a
vertex of the triangular
sides.

Fig. 95: Michele’s answer
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Example 2: Kristina’s Theorem

Kristina had this proposition: The area of the equilateral triangle equals half the area of the square. However, |
believe that this proposition only holds true for right pyramids (Fig. 96).

2.2 Oberprite die Behauptung von Kristina.

Her peers were asked to investigate
this particular proposition. They
soon found that it was not true.
Even Kristina herself realised why it
was flawed. Nevertheless, the veri-
fication of her proposition consti-
tuted an important point during our
journey, and the proposition itself
was both a surprise and led itself to
avery nice task.

Example 3: On the relationship between volume and surface area of a pyramid

In her journal, Blerta proposed that "If | start with a given volume, then, I think, | will obtain a pyramid with the
greatest volume and the greatest surface area. One is the prerequisite for the other.” The students were invited
to verify Blerta’s statement. If you consider all our paper models, do find it true that the one with the greatest
volume has the greatest surface area? At this point, we quickly realised that we had reached the limit of what
was possible at our level. The question seemed more appropriate for a higher secondary school task.

Example 4: An inscribed pyramid

The students had been asked to inscribe pyramids into
cuboids and to perform related calculations. In his journal,
Josua noted that he wanted to calculate the volume and
the surface area of the pyramid drawn (Fig. 97). The volume
posed no problem, but his calculations soon came to an end
when he tried to work out the surface area.
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| picked up his attempt and created a worksheet that allowed the students to calculate all parts of the surface
area separately (Fig. 98). The area of the triangle ACP (P being a point in the rectangle EFGH) posed a major

problem.

We had the lengths of the three sides, but it seemed impossible to calculate the height. We found Heron’s
theorem and with the help of Heron’s formula, we eventually managed to solve Josua’s question. Josua himself
even managed to find a solution that invoked the use of similar triangles.

o

The Aim of the Journey

[

Heron'’s theorem is not normally part of our curriculum.
For me, the use of this particular formula demonstrates
an important aspect of learning, namely that we should
not simply learn particular theorems when and because
they are listed in our curriculum but when they become an
integral requirement to find a solution. For the students, it
was a great success to discover that there was a formula
that solved our problem elegantly.

Fig. 98: Diagram from worksheet

Our goal was to find out who among the students had created the greatest possible pyramid from a given sheet
of A3 paper. We agreed that we needed to consider several categories. This, in turn, led to a variety of tasks, which
—under normal circumstances and given in a text book — would be perceived as laborious or outright boring.
However, because the students wanted to determine the winner, they went about it with great enthusiasm.

The following table shows their results (Fig. 99).
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Fig. 99: Ranking

Thus, we reached our goal and during our journey touched many important (and to the curriculum relative)
aspects. At the same time, the tasks gripped both students and teacher alike.
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Looking back

With this journey into the realm of pyramids, | would like to show that we touched nearly all aspects as set down
in the curriculum even without the use of a text book. Many questions turned out to be natural questions that
the students asked themselves. The crucial factor here was the first task, which kept us busy and motivated
throughout the whole journey. The following table shows the topics we dealt with in comparison to the topics
scheduled in our text book. The table also lists topics that became part of our investigation but would not have
been touched if we had used the book.

Topics and exercises dealt with in the text collections that were copied for all students
(No use of a text book):

Topics in our book Additionally treated topics

Two nets of a square-based right pyramid = all possible nets
= finding congruent nets
= discussing the definition

Building a square-based right pyramid = building an oblique pyramid
= building a tetrahedron

Drawing a pyramid in 3D

Calculating surface area, volume, height, side length, | = calculating these values for our own models
slant height

Constructing lengths given in a 3D diagram in their
actual size

Constructing areas given in a 3D diagram in their
actual size

Calculating the volume and the size of a four-sided | = similar exercises prepared by the students
pyramid inscribed into a cube or cuboid = similar exercises relating to a three-sided oblique
pyramid

The above tableillustrates that we covered nearly all aspects as set down by our curriculum. One topic, compound
shapes, had been left untreated, but | was able to use the question from the text book as an exam question.

Summary

| have always considered the chapter in our geometry book on pyramids as a little dull. Through the dialogic
learning approach, the discussion of this topic has become lively and, in fact, gripping. Even | as a teacher have
learnt a lot. More importantly, and once again, | have noticed with pleasure how willingly students contribute
with innumerable excellent ideas and questions. The reading of their journals often surpassed the fascina-
tion of reading a crime novel and was as stimulating as subject literature. Motivation among my students was
perceived to be extremely high. Some of the students couldn’t let go, continued working at home and came
back with wonderful ideas.
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A particular challenge the teacher faces within the framework of this model is the fact that lessons cannot
(indeed need not and should not) be planned weeks in advance. Sometimes, only the reading of the journals
induces a new idea that is worth pursuing as a task the next day. Now and then something exciting comes up in
the middle of a task being worked on. If it merits closer inspection, then this could be the next task.

Overall, Irecommend that the teacher be highly flexible and that he particularly believe in the students’ abilities.
A little more trust in their skills than is today sadly often the case will be more than generously rewarded.

4.7 Fibonacciin Thuringia/Germany —
Inquiry-based learning in interdisciplinary lessons

Jorg Triebel

The Thuringian teachers developed many
examples of inquiry-based lessons during
the Fibonacci project. As well as lesson
units dealing with topics that were purely
mathematical, interdisciplinary examples
also occurred in cooperation with teachers
from the physics, biology and chemistry
areas.

The lesson unit on the subject of "The
eternal — fascinating connections between
nature, art and mathematics" that is
described in the following shows the results
of such interdisciplinary collaboration.

Fig. 100: Pupil work on the subject of ETERNAL

Two pupils from the Goethe Grammar
School in Weimar expressed their opinions
at the end of the project:

We dealt with the question of what eternity
is, and how we can understand it. In order
to do this, we learned a great deal about
mathematics and biology, and then made
copies of pictures that attempt to compre-
hend the concept of eternity. We came across
one thing time and time again: The Fibonacci
sequence. Many of you may be familiar with
this from the Dan Brown book “The Da Vinci
Code”. The Fibonacci sequence is an expres-
sion of eternity, since the numbers become
consecutively bigger and the sequence is
endless.

Fig. 101: The Fibonacci sequence in nature
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During the project the pupils solved the famous “rabbit problem” and dealt with other tasks concerning endless
number sequences. They learned about applications for the Fibonacci sequence in art and architecture and the
meaning of the “Golden Section”, e.g. in the famous picture by Leonardo da Vinci “The Vitruvian Man”. The
pentagram also provided many opportunities for geometrical and historical research.

The pupils also discovered connections with the Fibonacci sequence in plants and animals and even in people
during the biological part of the project work. The variety of discoveries surprised all of the pupils, since these
connections were completely new to them.

Inthe artistic part, the young people creatively implemented their new knowledge about the Fibonacci sequence
in their own pictures. Enthusiastic feedback was provided upon completion of the project: “*We all enjoyed being
able to see the factual formulas and numbers in nature. Ultimately, we allowed both the Fibonacci sequence and
the spiral to flow into our pictures.”

Some examples show the wide variety of topics that were dealt with.

4.7.1 Spirals

= The flowers and fruit of some plants are in the form
of spirals. The number of spirals is always a Fibonacci
number, and in the case of fir and pine cones and the
romanesco broccoli this numbers are 13 and 21.

= The arrangement of the Egyptian pyramids of Giza corre-
sponds to a giant spiral, and the golden number phi can
be calculated using the Orion constellation.
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4.7.2 The golden section

= The growth of trees and the arrangement of the branches can also be described using Fibonacci numbers,
and provide proportions that correspond with the golden section. (Golden section = 1:1.61)

= Proportions of the human body in the golden section:
The length ratio of lower arm to the hand and the length ratios of the phalanges are about 1: 1.61
Many other length ratios in the human body also correspond to the golden section.

4.7.3 The golden angle

The golden angle (¥ = 137.50) is the result of dividing the full angle by the golden section.

= Nature arranges leaves using the golden angle:
The leaves are given new positions time and time again by means of repeated rotation around the golden
angle. The irrationality of the golden number does not permit any exact coverage, meaning that each leaf
can be provided with sufficient light and nourishment.

= The angle that the branches and the leaves form with the stem frequently corresponds to the golden angle.
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= Seeds in inflorescence
The angle between the architecturally neigh-
bouring leaves or seeds in relation to the plant
axis is the golden angle. (Golden angle = 137.5°)

4.7.4 Fibonacci numbers

The number of petals in many plants corresponds to a Fibonacci number. Some examples:

The passion flower (passiflora) has some particularly interesting associations with Fibonacci numbers:

= It has five sepals and five
petals

= 55 radial filaments,

= five anthers,

= three stigmas

Since this pupil project was so
successful, it was introduced to
interested teachers within the
scope of several training courses.
130 teachers were able to obtain
suggestions for their own lessons
at two national conferences.

Workshops in which teachers introduce successful example lessons and collaborate to develop them further
have generally proven to be extremely successful. The positive feedback that has been received is confirmation
that this training is a suitable instrument for the further development of the lesson.
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5 IBME in Teacher Education

5.1 In-service teacher training in the Czech Republic

Libuse Samkova

In-service training is not a compulsory activity in the Czech Republic; teachers do not need to attend any
seminars or workshops to advance in their careers. In extreme cases, pre-service university courses are the last
instruction a teacher receives.

Our department of mathematics is well aware of this very unsatisfactory situation: Mathematics itself may not
change, but the teacher does (as he professionally matures over time) — and so does classroom environment
(pupils’ needs change, curricula are modified, new classroom equipment appears, computers and educational
software are constantly improving). Therefore, teachers need take part in continuing education and training to
stay on top of the current developments in mathematics education.

That is the reason why our department maintains on-going relationships (also on a long-term basis) with our
graduates and with other mathematics teachers interested in in-service teacher training.

Every year we organize one or two 4-day intensive training courses. In these training sessions we acquaint
mathematics teachers with new trends, train them in using computers in teaching and help them cope with the
growing demands of the school curriculum. Recently we put emphasis on the use of GeoGebra in teaching and
on implementation of inquiry based methods into mathematics education.

Each course is intended for about 30 teachers; some of them are new to the course, and roughly half of parti-
cipants take part on a regular basis. These regular participants have become a part of the training team: They

present their schoolwork to other colleagues and share their teaching experiences. Broad discussions are an
essential part of our teacher trainings.

5.2 How to encourage teachers to participate
in IBME activities

Libuse Samkova

Since the IBME way of teaching is demanding for teachers, we need to motivate them positively, stimulate their
IBME activities, encourage them in their work, and offer them new ideas and approaches.

We present them new ideas for implementing IBME into teaching, acquaint them with ready-to-use learning

environments, and help them prepare their own IBME materials — not just at teacher trainings, but also during
the whole school year (through personal or e-mail consultations).
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Sometimes we offer them an atmospheric impulse. For example, in the form of mathematically tuned video
promotion. These videos focus on mathematics around us in our everyday lives. They monitor the occurrence
of mathematical shapes in nature, architecture, art, mechanics, geomorphology, microcosmos, etc. Some
instances are obvious, while others are thought provoking.

One of the videos is called “Regular polygons around us”. It contains images of various traffic signs, buildings,
technical equipment, animals, flowers, coins, magnified details of snowflakes or eyes — in other words, familiar
everyday objects (Fig. 1 —20):
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Fig. 9: Fort Jefferson at the Dry Tortugas Fig. 10: Australian kangaroo

warning road sign

Fig. 11: Reverse of a 1942 George VI
U.K. threepence

Fig. 12: Baptistry of Firenze, Italy Fig. 13: Official match ball for the 1974
FIFA World Cup Germany

Fig. 14: Ommatidia of an eye of Antarctic krill Fig. 15: Rime frost on both ends of a “capped

paY

Fig. 16: Paper folded regular pentagon Fig. 17: Allen screws (Inbus)

column” snowflake
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Such video presentations encourage teachers to look for new approaches
to their mathematics lessons and to suggest different places where
mathematics can be found. They offer topics for discussion on the impor-
tance of mathematics and on the presence of mathematics in everyday
life.

They even inspire some teachers to create similar presentations on
various mathematical topics. They can also invite children to cooperate
on a similar project, like taking photos of mathematics around us and
creating a presentation themselves. This approach is very effective in
improving students’ awareness and understanding of mathematics.

5.3 The specifics of the teacher education within the
Fibonacci project in Bulgaria

Evgenia Sendova, Toni Chehlarova

Teachers should not ask the questions but kids should ask the questions....
The ideas should be born in the students’ mind and the teacher should act as a midwife.
George Polya (1887 - 1985)

The Inquiry Based Mathematics Education (IBME) in the frame of the Fibonacci project has been promoted
in Bulgaria at two levels - nationally and locally, in major regional centers *. At national level the promotion
instruments were workshops, seminars and special sections of the national conferences organized by the
Union of Bulgarian Mathematicians. At a local level IBME was promoted and supported by multiple training and
presentation sessions organized in fifteen Bulgarian regions with the help of the Local Boards.
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5.3.1 Teacher training courses promoting a new role for the teachers

The specifics of the teacher training courses were the variety of the audience. The school principals would often
form groups of teachers from the primary and secondary school, teachers in mathematics, informatics, ICT,
and sometimes even in science, arts, and history so as to gain a critical mass of teachers able to implement
the inquiry based learning by means of dynamic computer environments. Thus the teacher educators had to
introduce relatively new dynamic software environments (GeoGebra, Geonext, Elica applications for 3D explo-
rations) for a couple of days in the context of dynamic scenarios developed by the Bulgarian Fibonacci team 2 in
harmony with the curriculum (but not limited to it) demonstrating at the same time the inquiry-based teaching/
learning process. This means that they had to experience jointly the phases of search, experiments, formulating
conjectures, checking and verifying them, and in some cases — providing rigorous proofs.

The participating teachers experienced the potential of the learning environments specially designed (i) to
support a joint work among teachers and students acting like a research team in which the teacher acts as a
discovery-guide; (ii) to encourage students to find their own learning paths according to their interests and
potential, and (iii) to build the knowledge in a cross-disciplinary context, especially integrating mathematics
with ICT, natural science and art (for details see also 3.2 in this book).

In orderto grasp better the specifics of the IBME the teachers were encouraged to enter the role of their students
and to explore the dynamic software environments on their own. Thus, even teachers with relatively modest
technical skills could gain self-confidence and show promising results 3.

Furthermore, they could experience the profit of working in teams integrating people with different level of
technical skills, various interests and expertise, still sharing the same enthusiasm of creating an exploratory
spirit in their class settings.

The variety of the audience stimulated the lecturers to reveal a broad spectrum of the potential of the dynamic
software - from typical geometry constructions, to modeling rotational objects and tessellation in the style of
Escher 3/ # (see also 3.2 and 4.4 in this book).

In addition to the teacher education courses the first phase of the Fibonacci project embraced the following
activities:

= Follow-up visits to check the progress of the teachers with using dynamic computer environments;

= Development and providing an open access to more than 50 dynamic scenarios appropriate for imple-
menting IBME in 1-12 grades;

= Launching a competition among teachers for developing mathematics modules based on dynamic
software;

= Stimulating the submission of articles in specialized journals and international conferences;

= Development of the first issues of a series of dynamic textbooks for the junior high school;

= Organizing a bi-weekly Fibonacci Seminar on the premises of IMI-BAS;

= Stimulating the work of teachers working with mathematically gifted high-school students on research
projects;

= Organizing invitational seminars and workshops for sharing the best IBME practices.

5.3.2 The follow-up events and the international component

The workshops and the seminars following the training courses were organized to check the progress of the
teachers in acquiring the skills necessary to implement dynamic computer environments in a class setting.
At these events the teachers presented and defended projects developed individually or in a team on a topic
currently taught by them.

The first impressions of the Fibonacci team were that the prevailing part of the teachers having attended the

short term training were still seeing the dynamic software as a means for visualization of mathematical facts
rather than for organizing experiments and explorations, for discovering patterns, for making conjectures.
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Feeling comfortable with the use of dynamic software is an important step towards making the inquiry-based
approach a natural component of the learning process. However, changing the style of teaching so that the
teachers could accept the role of a partner in a research process requires ongoing efforts on behalf of the
teacher educators. These efforts include preparing a good ground for exploration activities including re-formu-
lation of some classical problems so as to stimulate acts. Furthermore, we should not stop there - “you do, you
understand” says the old Chinese proverb. That is true but our goal is to extend it to “you explore, you invent”...
In some cases the teachers would react with: O-o-h, the inspectors would not be happy with this “waste of time”
—we have to cover the curriculum, the students have to pass the tests, etc. ... And they would be right if we accept
that education is about knowing the right answers ...

Thus, the next step (still a challenge for us as promoters of the inquiry-based learning) is to provide on-going
support to the teachers in applying in class the full potential of the dynamic mathematics software in harmony
with this learning style.

To meet this goal we have been organizing in the frames of the Fibonacci project open meetings/seminars twice
a month discussing various strategies of supporting teachers in their efforts. The proposed strategies include
maintaining a forum on the project using various platforms for sharing the best IBME practices of teachers,
visiting the Fibonacci project schools, updating and enriching the repository of dynamic learning environments,
writing and translating electronic textbooks facilitating the disseminations of the Fibonacci project ideas.

The experience of the University of Bayreuth (our Fibonacci Reference Center) in Increasing Efficiency in Mathe-
matics and Science Education (the SINUS project, see also the Companion Resource 3, Setting up, Developing and
Expanding a Centre for Science and/or Mathematics Education, part Il) on the whole territory of Bavaria has been
extremely valuable — leading experts of German Fibonacci team have visited Bulgaria, met with teachers and
delivered talks at conferences and articles in proceedings and journals, selected parts of > have been translated
in Bulgarian (published so far electronically ©).

Field visits in project partner cities (Augsburg
and Bayreuth) were very fruitful for the Bulgarian
researchers and teachers. Problems and projects
demonstrated by the hosting partners (e.g. patterns
with polyominoes in a table with numbers (see also
chapter 4.1 in this book) inspired the development of
new dynamic scenarios /. The multiple discussions on
the local education system and teachers’ professional
development, national educational standards and
curricula, available didactical tools and materials were
later shared at the bi-monthly Fibonacci seminar at the
Institute of Mathematics and Informatics, BAS.

The visits of the Fibonacci project evaluators and
consultants and their on-going support in following the
professional development of the teachers have been
also crucial for the next steps - identifying forty “Fibo-
nacci-teachers” (Fibonacci Project teachers) to act as
cascade teachers in their respective schools.

The support for these teachers and the joint work with
them has become the major task for the Fibonacci
team in Bulgaria, and several seminars organized on
both a national and international scale demonstrated
that these teachers are capable and willing to help
other teachers in applying the IBME approach 3 “.

Putting the efforts and achievements of the Bulgarian
Fibonacci teachers in an international setting contri-
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butes to their self-confidence and pride of belonging to the European community of innovative educators. Itis a
special honor for the whole Bulgarian project team that Ms. Steliana Atanasova, a Fibonacci teacher from 119t
Sofia School, received the Golden Feather Award of Bulgarian Teachers’ Syndicate at the closing ceremony of
the UNESCO International Workshop: Re-designing Institutional Policies and Practices to Enhance the Quality of
Teaching through Innovative Use of Digital Technologies, Sofia 2011.

5.3.3 Enhancing the teachers’ involvement in the dissemination of IBME

Another important initiative of the Bulgarian research team is to encourage the teachers involved in the project
to report their good practices in implementing the IBME on the pages of specialized Bulgarian journals. The
journals are meant for teachers and students of all ages thus disseminating the Fibonacci project ideas on a
relatively large scale.

There are a number of dynamic scenarios prepared by teachers which are published (after revision) on the
Bulgarian Fibonacci project site. The topics are among the most popular in the secondary school - graphs of
functions, solving equations containing absolute values, extreme points of functions, systems of inequalities,
systems of equations, systems of trigonometric inequalities, operations on fractions. The titles of the materials
are quite conventional — very informative, sticking to the formulations in the official curriculum. In contrast, the
titles of the teachers’ articles published in the two specialized journals already convey the spirit of the IBME.
Here are some examples

= from the Mathematics and Informatics journal (2010-2011):
- Kuncheva, D.: Let’s not be shy to experiment.
= Petrova, D.: Dynamics on the screen and among the students.
= Gushev, A.: Dynamic mathematics for everybody.
- Atanassova, S.: A fruitful error in a new dynamic environment, or The return.
- Kokinova, S.: Do not be afraid to jump into the unknown (or why does the fortune helps the brave ones).

= from the Mathematics journal (2012):
- Petrova, D., A. Milanov, and P. Stefanov: Two problems, dynamics, inquiries and something more.

Let us note that the last two authors are 12 graders-students of Ms. Petrova.

Another interesting approach, applied by Angel Gushev (a Fibonacci teacher from Veliko Tarnovo) was to involve
students in software design by assigning them mathematical projects. As reported by the teacher, his joint work
on the projects with the students brought advantages to all of them and the most recent project The method of
inversion — properties and application (Fig.22) gained the third prize at an international contest in Moscow.
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Currently the papers presented by the Fibonacciteachers and researchers at the practical workshop Inquiry Based
Mathematics Education held in Borovetz from 8 to 12 April, 2012 (in the frames of the 41st Annual Conference
of the Union of the Bulgarian Mathematicians), are undergoing the final editorial phase so as to be published
in full. The abstracts are published in Bulgarian in €. For you to get an idea about the variety of the topics and
practices here are some titles of papers by teachers with illustrations of the products of their students:

= Atanasova, S.:
The loci— a good terrain for

inquiry based mathematics ey
learning in 12th grade. kg
i

= Brauchle, M.: How to create a dynamic scenario easily from technical perspective?
= Cherkezova, K.: My experience with the inquiry based learning in the IT classes (5 - 12 grades).

= Gancheva, Z.: Dynamic figures of equal area for fun and explorations — a lesson for fifth-graders.
= Gusgey, A., Gushev, V.: The Dynamic software — from zero to infinity.

= Dankova, M.: Regular grids and modules in the Fine Art classes.

= llionova, S.: Dynamic geometry in 5th grade — achievements and challenges.

= Kokinova, S.: A new jump in the unknown in the mathematics classes in 10th grade.

= Kuncheva, D.: Is there a room for the
dynamic software in the Applied Art IO
selective classes? ST e
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= Kuyumdzhieva, B.: From curiosity to knowledge.
= Bizova-Laleva, V.: Applying the geometric congruencies in practice.
= Marcheva, K., E. Velkov, and V. Stoilovski: The exhibition as a stimulus for work.

In some cases the contributions of the teachers found place in international editions 0.

Although the scale of the Fibonacci project dissemination is relatively large in terms of the number of schools
and teachers, it is extremely important to raise the awareness of the general public about the impact of the
IBME on the students’ motivation for learning.
With this in mind the Bulgarian Fibonacci team
has been involved in a number of social events
dedicated to the attractive side of mathematics
- interviews with local radio- and TV stations,
creating films with the participation of teachers
and students practicing the inquiry based
approach, delivering presentations at inter-
national forums “. The European Researchers’
Night (an event, having become already a tradi-
tion) turned out to be especially contagious
with its "Dynamic mathematics”. This was the
title of a section at the premises of the Bulgarian
Academy of Sciences where our Fibonacci team
organized a quiz of puzzles (based on dynamic
software) and an Escherization contest (crea-
ting tessellations in the style of Escher).
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The event was attended by children and adults, joining
in teams to “take the gauntlet” thrown dawn by the
organizers. Not only the random visitors, even collea-
gues expressed their sincere surprise that mathematics
could be made so attractive and enjoyable for young
people.

5.3.4 The lessons learned

As a result of their participation in the various project
activities the Bulgarian Fibonacci teachers realized
that it is their responsibility to organize successfully
pupils’ own experience in the inquiry-based style.
These teachers felt better prepared (not “trained”) for
their new role - that of an advisor, consultant, stimu-
lator, sometimes a partner, sometimes a therapist, but
always a participant into creative process 1.

Looking back at the challenges our trainee-teachers have overcome, we feel proud with their newly gained
self-confidence, with their readiness to teach in a guided discovery style. Good examples of teachers’ creati-
vity can be found in most of the schools today and our duty is to spread their achievements through journals
and conferences for teachers, and based on such achievements to enrich the in-service and pre-service teacher
training.

The main lesson for us as teacher educators could be summarized as follows: if we hope for areal positive change
in education, we should bring today’s and tomorrow’s teachers in situations in which they would stop thinking
about the future in terms of tests, exams or teaching pupils only. We should rather enable them experience what
they are doing as intellectually exciting and joyful on its own right 12.

Further on, we cannot teach the guided discovery style without engaging ourselves in assisting the art of

discovery, without acting as research partners to the people we teach, without demonstrating how we try to
solve the problems occurring during the research process.
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6 Inquiry Based Mathematics
Education (IBME)
and Gifted Students

Petar Kenderov, Evgenia Sendova

6.1 Introduction

As people involved in various aspects of gifted education, particularly in the context of mathematics and
science, we have often argued that the talent is a resource which, unlike the ores, could vanish if not discovered
early enough ...

Indeed, to appreciate the real beauty and meaning of mathematics/science and possibly choose it as their future
profession the students should participate from an early age in activities enabling them

| to apply mathematical thinking and modeling in daily life;

Il. to use scientific methods as an integrated whole;

lll. to conduct their own explorations;

IV. to formulate hypotheses and problems, and to attack open problems .

An additional crucial competency of the future citizens of the knowledge&creativity based society is to build
continuously knowledge throughout their life 2.

All these activities and competencies are in the core of educational strategies based on the inquiry approach to
learning. While this approach has been natural for the natural sciences it is relatively new in the context of the
mathematics education. An important branch of the IBME is to encourage and develop the research potential of
mathematically gifted high school students. It is interesting to note though, that the majority of existing empirical
research on inquiry based learning has been only occasionally with specific attention to students with high ability 3.

Still various forms exist for young mathematical talents to experience even at school age the specifics of
the scientific research process: specialized research programs, school sections in the frames of professional
conferences, symposia and fairs for young scientists. Many researchers in gifted education express their belief
that educational programs outside of schools are absolutely necessary for gifted children because they meet
their special learning needs by providing more opportunities for independent inquiry, in-depth study, and
accelerated learning “. In addition, a summer program is a great chance to meet other students who are fasci-
nated by learning. Courses in these programs combine the best of both worlds: accelerated content and bright
age-peers. Summer programs vary in terms of content, duration, intensity, sponsorship, and overall purpose.
Still some general benefits are found ° to include the following:

= Perceptions of increased social support for learning and achievements due to homogeneous grouping
and support from counselors, tutors, and mentors;

= Positive feeling resulting from a more appropriate match between the student’s academic potential and
the challenge of the research projects;

= Development of skills for intensive study and for doing scientific research;

= Reinforcement for risk taking as a result of extending oneself intellectually and socially;

= Growth in acceptance of others and (in the case of international component) knowledge of different
cultures.
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Below we consider two initiatives in this direction — one in Bulgaria, and one in an international context.

Raising students’ mathematics and science curiosity, and developing their scientific competence have good
roots established in the mathematics community in Bulgaria.

6.2 The High School Students’ Institute — a Bulgarian
model of mathematics and informatics research at
school age

The High School Students’ Institute of Mathematics and Informatics (HSSI) © was established in the year 2000.
This was one of the undertakings of the Bulgarian mathematical community in response to the decision of
UNESCO to designate 2000 World Year of Mathematics. The name “Institute” reflects the endeavor to have an
organization that functions like a research organization, according to the principles of scientific life 7.

The founders of HSSI were the Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences
(IMI-BAS), the Union of Bulgarian Mathematicians, St. Cyril and St. Methodius International Foundation, and
Evrika Foundation.

The infrastructure of the HSSI has been adapted to the specifics of the local conditions — its activities are
focused on projects in mathematics, informatics and information technologies . Thanks to the well-developed
network of competitions in mathematics, informatics and linguistics for secondary school students in Bulgaria ?
the young people can exhibit their abilities and gifts. For more than 20 years Bulgarian high school students
successfully participate in the International Olympiad in Mathematics (IMO) 19, in the International Olympiad in
Informatics (I01) and recently in Theoretical, Mathematical and Applied Linguistics (IOL). The last two events were
in fact initiated by and hosted for a first time in Bulgaria, 101 —in 198911, and IOL —in 2003 2.

Competitions cultivate the ability to answer questions formulated by other people (the Jury of the competition).
This ability is very important, no doubt about it. People living in knowledge&creativity based society however
will operate in a challenging and demanding environment where the ability to formulate relevant questions and
pose problems will be equally important. The best way to train and develop such ability is to perform research
or research-like activities. This is what HSSI offers to students. While working on a specific problem the students
do not only extend the volume of their knowledge. They learn also how one creates new knowledge. Thus, the
main mission of HSSI is to nurture the students’ development as future scientists.

The infrastructure and the activities of the Union of the Bulgarian Mathematicians, which has long-standing
traditions in early identification and proper enhancement of talents, were an essential component of the local
conditions. Since 1980, School Sections in the framework of the annual Spring Conferences of UBM have been
organized for the high school students to present their papers. The interest in these sections shown by teachers
as well as students has been great. This has contributed naturally to the mission of HSSI to keep the traditions
alive giving them a new spirit and a new content.

Another important component was the environment provided by IMI-BAS stimulating the growth and the
progress of HSSI. Many researchers at IMI-BAS have been devoting a significant part of their free time to keep
the level of extra-curricular work with gifted students sufficiently high. Their work supports and enables HSSI to
assist the intellectual and professional growth of the high school students.
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The participants in HSSI are high school students between 8% and 12t grade, usually aged 15 to 18, predomi-
nantly from specialized Science and Mathematics Secondary Schools in the country. Every participant in HSSI
works (possibly in a team) on a freely chosen topic in mathematics, informatics and/or information technolo-
gies under the guidance of a teacher or another specialist in the respective field. A written presentation of the
project in the form of a paper is sent to HSSI. All papers are reviewed. Papers involving creativity elements are
given special credit. The best projects are accepted for a presentation at special conference sessions of HSSI.
The distribution of participants shows that big and small towns alike are involved in sending their representative
in the HSSI 3.

In the period of a school year HSSI organizes three events - two conference sessions and a research summer
school. The High School Students Conference is usually held in January and is attended by more than 200
students, teachers, researchers in mathematics and informatics, parents, journalists. The conference is held in
two streams — mathematics and informatics/information technologies. The authors present their work in front
of a Jury of specialists in the field and in the presence of the general audience. The Jury asks the students various
questions so as to check the level of their understanding and creativity. The projects in informatics and infor-
mation technologies are additionally run on computers to be judged by a specialist from technical point of view
before being presented to the audience and the Jury. A poster session is held in parallel to these two streams.

Based on the merits of the paper and the style of presentation, the Jury judges the works and selects the best
ones. Their authors receive Certificates for Excellence; all other participants are given Diplomas for participation
in the event, which by itself is a high recognition.

The owners of Certificates for Excellence are invited

| to participate in the School Section of the Annual Conference of the Union of Bulgarian Mathemati-
cians, and

Il.  tobe interviewed for the selection of two Bulgarian participants in the Research Science Institute (RSI)
—an international summer program held at MIT (USA) ** (to be considered in details in 6.3).

The School Section could be also attended by students who present their research for a first time. The process
of reviewing and selecting papers for the School Section is the same as above. The authors of the best projects
from this section are invited to participate in the three-week Research Summer School, which takes place in
July — August in two locations — at the sea coast and in the mountains. During the first two weeks, lectures
and practical courses in mathematics and informatics are delivered by professional researchers from univer-
sities, academic institutions and software companies. The main goal of the training is to extend the students’
knowledge in topics related to their interests and to offer new problems which become the core of short-term
projects.

The third week is devoted to a High School Students Workshop, where the participants report on their short-term
project’s results and exchange ideas for further studies. The presentations are in front of specialists whose role
is to advise the students in finding appropriate topics and problems to be studied, to recommend methods and
tools towards achieving high quality results.

To help teachers improve their mentoring skills a High School Teachers Workshop is organized during the third
week of the Research Summer School. Participants usually embrace the research advisors of the students’
projects, presented at the events of HSSI during the school year, as well as (in 2011) selected Fibonacci teachers.

Several students from HSSI were specially invited to participate in various workshops (including within the Fibo-
nacci project) to present their work demonstrating the potential of the dynamic software for attacking open
problems and formulating their own ones % 16, Here is what one of them recently accepted to study mathema-
tics at Cambridge (UK) shares about the entrance exam and its possible connection with the Fibonacci project:
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Yanitsa Pehova

The exam consists of eight math problems, three mechanics problems and two statistical problems and the
grade is formed by these six of them you’ve solved best. The thing that caught my attention was the opportu-
nity to choose these problems you are good at and show your skills there (in this case, to skip the problems you
can’t solve). | find this attitude to be exactly what Fibonacci should cultivate in teachers not only by introducing
computer programs into the classroom but also by much simpler means of improvement... This exam avoids the
obligation for you to study everything that is going to be on the exam instead of just focusing on what’s interes-
ting to you and what you are good at, somehow compensating for your poorer knowledge in other areas. So to
say, if you are born a fish, there is no point in trying to climb trees when you could practice your swimming skills;
they both count as Physical Education. Moreover, such an exam helps students make discoveries by taking small
steps: not only is the form of the exam different but the problems, too. They are usually built around a simple
statement and consist of little steps in the form of sub-problems that build up to a general result. Encouraging
research in school is what our High School Science Institute (HSSI) has been doing for years but only with already
exceptional students. | think this way of school examining is an opportunity for even ordinary students to engage
in math research and develop skills in a specific area they find interesting... something like a High School Science
Institute Way of Teaching (HSSIWT)!

N\ J

Another important activity of the HSSI is its monthly seminar at the Institute of Mathematics and Informatics.
The aim of the seminar is to bring together high school students, teachers and scientists to present and discuss
problems of common interest.

Itis since year 2000 that the HSSl is in charge of selecting the Bulgarian representatives for RSI. The Jury includes
researchers from the Institute of Mathematics and Informatics, other research institutions, representatives from
St. Cyril and St. Methodius International Foundation, America for Bulgaria Foundation, and very importantly —RSI
alumni. The members of the Jury would already have an idea about the research potential of the candidates so
the students would additionally demonstrate their fluency in English, their general and professional culture,
their talents in singing, dancing, poetry, fine arts (sometimes - even in magic performances), as well as their
social skills.

In an attempt to convey the atmosphere of the interview let us share some interesting moments of a recent
one 7. One of the challenges coming from a member of the Jury was: Quote a fundamental theorem proved in
the last 50 years which is not the Fermat’s Great Theorem. The student being interviewed formulated (with no
hesitation) a result presented by two of his HSSM peers, also applying for RSI. Another memorable answer was
given to the question: What is the next line in the monolog "To be or not to be; that is the question”. The student
immediately responded: The question is not "To be or not to be”, the question is "What to be” ...

The Jury smiled at the ambitions of another participant who expressed his regrets that Grigori Perelman has
already turned the Poincaré conjecture into a theorem and thus has solved a problem which was both among
Hilbert problems and the Millennium problems — something that deprived our hero of achieving the same...

Often it is from the questions of the RSI alumni that the candidates realize better what the participation in RSI
is—not only a great honor but a challenge and a responsibility to pass what they have learned to their peers and
to the younger HSSI generation. Finally, the two representatives are chosen based on their overall performance
—the work on a project, the presentation skills, the achievements in mathematics and informatics events, and
the interview.

The most important result of HSSI is the qualitative difference in the knowledge acquired by students taught
in the traditional manner and by the HSSI students. In order to work successfully on a given project the latter
students learn a lot of additional material, often going far beyond the obligatory syllabus. They understand
much deeper the topics they learn and are able to apply their knowledge to finding answers to questions and
conjectures they themselves formulate. This is what happens in real research. The opportunity to present results
to peers makes the similarity with science even stronger. In fact, the students of HSSI get a rather real picture
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of what science is and acquire practical habits in doing research. What happens in HSSl is a genuine example of
inquiry based learning where the students “are discovering” knowledge themselves by searching the existing
classical literature and Internet resources, by combining in an original way known facts and, sometimes, are
obtaining original results about the studied topic. The teachers (supervisors in our case) do not provide the
knowledge in terms of direct instruction. They help the students develop the necessary research skills (analytical
thinking, formulation of conjectures, experimental verification of the conjectures, etc.) and guide the overall
process of work.

On the occasion of the 10 anniversary of HSSI its activities and achievements were presented at the 39*
conference of the Union of the Bulgarian Mathematicians 8. Several people closely involved in the HSSI activi-
ties also shared their thoughts about this institution, unique in a Bulgarian setting:

Stefan Dodunekov (the late President of the Union of the Bulgarian Mathematicians and President
of the Bulgarian Academy of Sciences):

Even if HSSI would be the only thing left after us, as educators, | would be endlessly happy. I feel very proud for
having the chance to be able to contribute to the founding of this Institute. Nurturing and stimulating young
talents as well as the development of mentoring skills of the mathematics and informatics teachers are extremely
important.

N\ J
~

Boriana Kadmonova (President of Evrika Foundation):

To me the founding of HSSI was a very significant event, organized by people who have dedicated their profes-
sional life to the young people so that they could surpass their teachers and achieve their dreams for a life reali-
zation. Unifying the knowledge and the experience of us, the elder people, with the motivation and the scientific
endeavor of the youngsters, creates the magic — the magic, which attracts every year a new crowd of students
from all over the country, ready for new ideas and projects. The feeling to be part of something magic, something
useful, something being a symbol of youth, creativity, future and a lot more makes me happy ...

N\ J

(Oleg Mushkarov (Director of the HSSI): A

The activities of the Institute were acknowledged in the contexts of the European projects meeting in mathema-
tics and Math2Earth as the best practices with gifted high school students in mathematics and informatics. In
the last three years the best five informatics students from HSSI are admitted to participation in the International
Conference CompSysTech conducted every year in Bulgaria and comprising scientists from all over Europe. The
two students selected each year by HSSI to participate in RSI performed really well. The projects of Kaloyan Slavov
(2001), Vesselin Dimitrov (2003), Antony Rangachev (2004), Galin Statev (2008), and George Kerchev (2009) were
ranked among the representative five in RS in the respective years *. Several articles with results obtained by
HSSI students were published in regular scientific journals. During 2009 an international commission of about
40 scientists from more than 15 countries evaluated the activities of every institute of the Bulgarian Academy of
Sciences. The achievements of the IMI related to the identification and nurturing of young talents were evaluated
very highly. The evaluating commission was impressed by the fact that eminent Bulgarian scientists in various
fields of mathematics and informatics work directly with gifted high school students and are involved in their
development at a level comparable with the most developed countries.

N\ J

* This list should be updated with the names of Todor Markov (2011) and Kalina Petrova (2012) who received the same recognition
for their written presentations.
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Neli Dimitrova (Coordinator of HSSI till 2006):

| started working as a coordinator of HSSI from its very founding. The first years were the most difficult ones, but
very exciting at the same time. These were the years during which the goals, the mission, the structure and the
activities of the Institute were taking shape. There was a lot of work — organizational, administrative, financial,
coordination of the scientific support of the HSSI conferences and summer schools. How could one embrace so
many and so versatile activities? There is a single answer — with much love, devotion, dedication — the way a
mother (and only she) is able to dedicate herself to her children.

N\ J

~

Borka Parakozova (Coordinator of HSSI since 2006):

The ongoing contact with the young people is very enriching experience. | am always moved from the expressions
on the faces of the candidates for RSI immediately after they have been interviewed. And | make a comparison
with how they look like after the results have been announced. Some are happy, other — disappointed, there are
even tears. | would like to see a greater number of happy faces but the number of the lucky winners is fixed...
I hope that the HSSI alumni after their graduation in prestigious universities around the world would not forget us
and would pass the torch to the next generations of young talents.

N\ J

It is worth mentioning that HSSI did not start from scratch — it inherited the good experience and traditions of
an earlier movement of the technically creative youth in Bulgaria, and implemented partly the model of the
Research Science Institute (RSI) which we present next.

6.3 The RSl international summer program and the
challenge to describe it by one word

Let us start with an attempt to describe RSI with one sentence: “the place where to be extraordinary is the most
ordinary thing”... This applies to the students, to the mentors, to the morning- and evening lecturers, and to all
the rest officially and unofficially involved. A few words about the RSI's founding and principles 13:

The Research Science Institute was created within the Center of Excellence in Education (CEE) co-founded by
the late Admiral Hyman George Rickover, father of the Nuclear Navy, and Joann DiGennaro, who serves as the
current president of CEE. Towards the end of his life, Admiral Rickover began to bring together high school
students from across the United States and other countries who showed a high interest and ability in science
and mathematics. His idea was to create a community of exceptional scholars, including these students, noted
high school teachers, university professors, and working research scientists. The six-six week RSI program was
launched in 1984. Today it embraces about 2,000 alumni.

RSI is attended by 50 American and approximately 30 international students. While the list of the foreign
countries sending participants in RSI change from year to year it includes Australia, Bulgaria, China, France,
Germany, Greece, Hungary, Israel, India, Korea, Lebanon, Poland, Qatar, Saudi Arabia, Singapore, Spain,
Sweden, Switzerland, UAE, and the United Kingdom. Once selected, the students come to MIT and work on
a research project under the guidance of faculty, post-docs, and graduate students at MIT, Harvard, Boston
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University, and other research and industry institutions from Boston-area (e.g. Massachusetts General Hospital,
Harvard Medical School, Hewlett-Packard Company, Akamai). All the students chosen for the program will have
already acquired a deep interest in a scientific field of inquiry, and have found opportunities to acquire some
form of field experience. The Institute begins with four days of formal classes. Professors of physics, biology,
chemistry, engineering and mathematics (usually RSI alumni) give lectures on important aspects of their field
and their own research. The students also attend lectures in humanities integrating literature and cinema arts
(Frankenstein and Odyssey being the topics of the recent RSI years).

The internships that follow the formal classes comprise the main component of the Institute. Students work in
their mentors’ research laboratories for five weeks. At the conclusion of this internship, they present a paper
summarizing their results and give an oral presentation of their work in front of a large audience at the RSI
Symposium.

The RSI staff chooses ten oral presentations to present again at an “Encore Presentation session” to guest
judges (professionals from various institutions in and around Cambridge). The guest judges then choose five
presentations as the “representative talks” of the specific year.

A typical RSI paper could be best characterized as a progress report for a continuing research effort throughout
the program. The transition from progress report to a final research paper is typically one of reduction of the
existing text through editing offered by the tutors with the perspective of the final results in mind. In addi-
tion, the last week teaching assistants and nobodies (RSI alumni with no formal duties) supply editing advice
of great quality in the week before the papers are due. Especially important in the process of preparation are
the milestones — intermediate steps of the process. Typical milestones for the written presentation are: writing
about a mini-project using the same sample as the one for the final paper; gradually filling the proposed sample
starting with the background of the project, the literature studied and the methods used; considering partial
cases and possible generalizations; classifying the cases of failure (in the case of mathematics projects), etc.
Possible milestones for the oral presentation are: speaking for 3 min on a freely chosen topic, presenting the
introductory part of the project for 5 min, presenting in open space (without visual aids), etc.

Here are some examples of mini-project titles under the topic "Do an experiment involving an art object found
on the MIT campus. Create a hypothesis, perform an experiment, analyze the data” (RS1 2012):

= Distribution of Distances between Adjacent Pseudo-Reflecting Rectangles at the MIT Chapel
= Ratio of Tourists Stepping Inside the Alchemist Sculpture

= Visibility of the MIT Logo Formed by Parts of Wiesner Building

= On the Eastman Plaque’s Rubbed-out Lucky Areas

= The Golden Ratio in Works of Art Around MIT Campus

= Measuring the Infinite Corridor

The variety of ideas and wish to be original could be seen even from this small sample. What is “the same”
though is the structure:

I. background, including context and motivation;
Il methods, including controls and experimental apparatus; main results; discussion of the results;
conclusions, acknowledgments, references.

All the milestones are accompanied by a feedback from the tutors, who work closely with the students. The
role of an RSI tutor (performed by the second author since 1997) is to help the students in presenting their
“journey of explorations” in a suitable written and oral form. The tutors read and critique the draft papers,
provide editorial remarks, suggest avenues of research and areas of additional background reading, give ideas
for tuning the oral presentations to the specific RSl audience, etc. How to cope with the anxieties of these gifted
students, how to help them to adjust to the requirements of the research, how to support them when feeling “stuck”
without depriving them from the joy of the ownership of their work, how to help them to enjoy the team work, how
to distribute their time between “pure research” and documenting it — all these questions are components of a
collective know-how tutors are expected to gain and spread further to the novice tutors. In general, the tutors
are kind of psychological oil in a very complex mechanism.
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To get an idea of the variety of topics of projects performed at RSl one might look at the compendiums of three
consecutive years 12 containing the abstracts of all the written reports with five selected as representative for
the respective year (published in full).

The titles of the projects of the Bulgarian RSI participants since 2001 are as follows:

= On Hurwitz equation and the related unicity conjecture

= A Generalization of Poncelet’s theorem with application in cryptography

= Graph embeddings

= Implementation of motion without movement on real 3D objects

= Zero-sum problems in finite groups

= A novel command protocol used in a virtual world games framework

= On the solvability of p-adic diagonal equations

= Creating custom board games for fun and profit

= The number of isomorphism classes of groups of order n and some related questions
= Application of decision trees and associative rules to personal product recommendation
= Representations of integers as sums of square and triangular numbers

= Dynamical processes in real-world networks

= On a linear Diophantine problem of Frobenius

= Searching for repeating microlensing events

= On Fermat-Euler Dynamics

= Rational Cherednik algebras of rank 1 and 2

= On the filtration of the free algebra by ideals generated by its lower central series
= A milti-objective approach to satelite launch scheduling

= On the Hausdorff dimension of cycles generated by degree d maps

= The competitiveness of binned free lists for heap-storage allocation

= Extremal degrees of minimal Ramsey graphs

= Rational fixed points of polynomial involutions

= Visualizing the energy landscape of a regulatory network in the presence of noise

= Graph theory applications in neuron segmentation

The titles of the papers selected among the five representative ones are in bold.

The atmosphere of nurturing young talents in science, an atmosphere of removing the impediments of their
intellectual growth and supporting their natural desire to explore and create is inspirational. The students learn
what research is by doing research under the guidance of experienced mentors.

The RSI mentors are typically renowned specialists in a specific scientific field often possessing deep knowledge
in various other fields and multiple artistic talents; in short they are good models for the students to follow. One
of them, a mentor in projects in theoretical physical chemistry, describes (as quoted in 1) his RS| students as a
secret weapon in furthering theoretical physical chemistry research, particularly in cutting-edge and high-risk
area: My own strategy is to be conservative when | provide my ideas in a great proposal, but | give the RS/ students
exploratory projects that | or my graduate and post-doctoral students would never try! Another mentor, a specialist
in quantum mechanics, shares his impressions about his RSI student:

-~

His great enthusiasm was highly communicative: | would explain something to him, and his face would light up
almost immediately — he was often ahead of my explanations. He has a great capacity to absorb material; | would
often wonder whether he was following the discussion, and realize only afterwards that he had already been
preparing questions, always racing forward. He was impressively quick to grasp complex ideas, and was able to
reformulate them in his own words in a very clear way — a sure sign of deep understanding. This was especially
impressive given the project involved familiarizing oneself with some deep concepts in quantum mechanics that
he had never before been exposed to. | am sure that he will have an astonishing career, whatever field he even-
tually decides to get into.

N\ J
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The mentoring in mathematics has its specifics though — the mentors are often graduate students working as a
team under the guidance of a coordinating mentor — a model established by Prof. Hartley Rogers, a legendary
figure at MIT. After students have exposed their research interests and mathematical background in their essays
the mentor of mentors discusses the research preferences of the RSI students with the mentors-to-be and
matches them according to their respective research interests and background. Here is what Prof. Rogers says
about his involvement in RSI 13:

This system has been surprisingly successful. Solving new mathematical problems is a chancy and unpredictable
undertaking. In particular, the timing of success cannot be legislated in advance ... But on the whole, the quality
of the RS students was so high, and the enthusiasm of the mentors was so great, that extraordinary results were
achieved.

From the view point of the mathematics mentors the process is difficult but rewarding as seen from the following
fragments from their evaluation forms (presented to the CEE after the program):

-~

The approach to designing a project depends greatly on the student’s previous experience... This makes the
choice of problem particularly crucial. The desire of students to work on unsolved problems makes this choice
even harder. | would sacrifice the latter goal in favor of giving the students something they can get to grips with
without too much hand-holding.

My work at RSI was both pleasurable and difficult. The nice part is meeting talented and enthusiastic students
who are eager to learn mathematics through their own investigations rather than one-way instruction. The
difficult part is that a great deal of thought and patience is required since introducing high school students to
mathematical research means teaching many important skills at once.

N\ J

The transforming process of the RSI summer program happens at a critical time in the lives of the students. It is
a time when they begin to make choices for themselves that will define the course of the rest of their lives. It is
an emotional time when friendships are made that can last a lifetime.

Immediately following the summer program, Rickoids (as the students are called after Admiral Rickover) stay in
contact with each other and with the staff, virtually and many continue to work with their mentors on research
projects. The contributions, devotion, and intellectual strength that the whole RSI community brings to the
program year after year are impressive.

It would be interesting to hear some thoughts of the students on doing research in the context of the summer
programs considered:

~

Sam Backwell (Australia, RSI 2011):

During our evening lecture series, Noble Laureates and industry leaders from companies like Google and IBM talked
openly about the evolution of science that they, personally, have had a hand in. Discussions ranged from viruses to
the global financial crisis and from astrophysics to the next generation of computers. I, personally, was privileged to
have dined with Dudley Herschbach who received the 1986 Nobel Prize in Chemistry and started his research before
much of the content of my chemistry book was known... | developed a computer program which sorts different types
of atoms and then compares the displacement of individual atoms on their neighbours. While the results are very
cool although quite complicated the sense of ownership I felt about the simple blue image you may have seen | got
on the screen and the over 1000 lines of code | wrote are far more valuable to me. There’s a special thrill coming when
you do, or discover something no one has done before and this is one of the biggest gifts of RSI. )
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Kristina Hu (US, RSI 2011):

Many people (including myself) expected prior to RSI that it would be a fairly academic experience where the
students would be extremely focused on their own projects and ideas. What amazed me the most was the amount
of collaboration between the Rickoids; not only were people genuinely interested in learning from their fellow
peers, but everyone seemed to harbor an extreme desire for their efforts in science to impact society in a positive
way. Before RSI, | had never imagined the extent of the applications of research. Now, | know that together with
my peers, we have the potential to do great things for the world and its people — and that is the most empowering

feeling.

N\ J

~

Allan Ko (US, RSI 2012):

Though both RSI and my mentorship at home gave me amazing opportunities to conduct independent research,
RSI made it a life-changing experience by placing me in a community of students and staff as passionate about
science as myself. Whenever | was stuck or had questions, there was always somebody nearby that | could talk to
for help, ideas, or advice. Working late into the nights writing up code or papers is never easy, but simply having a
group of friends all working in the same room sharing the same struggle and helping each other made the burden
much lighter. With the wonderful staff’s expertise and the students’ shared camaraderie and passion for science,
RSI gave me not only a high-level research opportunity, but also an unparalleled environment and community that
never failed to guide, support, teach, and inspire me in my work — something that | didn’t have as much of when |
was working at home by myself. ...As much as research and science is, RSl is so much more — it is love and family, a
community of students that share a common passion and drive. RSl is being amazed by everyone’s intelligence and
good nature, the fact that everyone is brilliant and yet no one would be able to tell from an everyday conversation,

the way that encountering their genius makes me feel not inferior, but inspired.
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Katerina Velcheva (HSSI and RSI 2010):

Before participating in RSI the interesting project for me were those dealing with ordinary ICT applications.
Now | consider a project interesting if it is challenging enough, if it is related to science, theory, something new,
undiscovered, something nobody has done before... My wish to do science became stronger than ever. RSl was a
place where | met people from all over the world sharing my interests and for that I'll be eternally grateful.
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Rafael Rafailov (HSSI and RSI 2010):

RSl was a great experience for me, as | had the chance to work on a problem proposed by a mathematician of the
rank of Prof. McMullen (a Fields medalist) who gave it to me to work on in the future.

The RSI program taught me that things don’t always go the way you expect them to go, but that one should
always try to get the maximum out of every situation and not regret about anything, a lesson I think would be
very useful in the future.
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Valeria Staneva (HSSI| and RSI2012):

RSl is both characterized by endless research opportunities and a strong, supporting community. We had the
chance to work with some of the best scientists in the world, even though we are only high school students.
| worked with Dr. Regan from Beth Israel Deaconess Medical Center in the field of computational systems biology
on the design of an algorithm that can model and visualize the energy landscape of a cell’s regulatory network.
Having such a tool could aid the process of drug development and have an important impact on biomedicine as
a whole... At RSI, we learned not only about science but also about decision making. During these marvelous six
weeks, | have been enveloped in an environment of care, curiosity and dedication, a phenomenon we call "RS/
love”... At RSI, | learned how happy it makes me to do research. | now realize that | definitely want to pursue a
career in computational biology.

N\ J
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Kalina Petrova (HSSI and RSI 2012):

HSSI has played a great role in my learning how to write scientific text, how to present my achievements and how
to speak in public. But there is more to it than that. The conferences and the summer schools have given me the kind
of scientific interest that drives me to explore every unfamiliar concept and to delve into every unconventional idea
I get. Moreover, HSSI has had a great impact on forming the Bulgarian student scientific society. This is a group of
people who share my interests and with whom | can have conversations on subjects that really matter to me. Unlike
my RSl friends, | see these people every few months and time spent with them has grown to be an important part of
miy life. | particularly like the notion that in whichever Bulgarian town or city | go, | have a friend there to see.

My project at RSI was in computational neuroscience, which meant learning a great deal about how the brain
functions. That was an unusual experience for me because | have always been prone to delving into mathematics,
computer science and physics and not paying attention to other scientific fields... I did not expect meeting some-
body who would be better than me at absolutely everything — and indeed | met more than one person fitting that
description. My competitive nature had huge difficulties handling that. However, by the end of RSI | had learned
new things about myself too — | had never even imagined that | was physically capable of spending ten days with
severe sleep deprivation and being productive almost constantly at that. RSI was about getting the best out of
myself — it was about running five miles despite the horrible pain in my ankles in order to not let my companions
down; but it was also about taking advantage of the stimulating environment while expressing my own uniqueness
in the best possible way. In that train of thought, I think | grew a little bit wiser — now my inherent maximalism is
successfully coexisting with humbleness towards other people’s talents and skills no matter how great they are.
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In the summer book produced by all the students at the end of the program there is a challenge to describe
RSI with one word only. Among the many interesting ideas one finds the following: inspiring, memorable,
short, awesome, brofinity, sleepless, exhausting, magical, odyssey, intense, indescribable, onewordisn’tenough,
surreal, liberating. And the last one showing that the one-word description of RSl is really a challenge: Amazing.
Unbelievable. Inspiring. Life-changing. Eye-opening. All of these together cannot capture the essence of RSI.

Let us mention at the end that one of the crucial factors for transferring the RSl experience within the HSSI model
was the long-term collaboration between the Center for Excellence in Education, the Institute of Mathematics and
Informatics at the Bulgarian Academy of Sciences and the St. Cyril and St. Methodius International Foundation. In
the recent couple of years, the financial support of America Foundation for Bulgaria has also been decisive for
sending Bulgarian participants at RSI.

Conclusions

In conclusion we share our belief that disseminating inquiry-based science and mathematics learning as a major
transversal competence will contribute to the building of a knowledge&creativity based society. When provided
with the right research environment the students feel stimulated and supported to achieve their best while
acting like scientists and problem solvers, and to apply these competencies during a lifetime. This will help them
not only to keep in pace with the development of a specific professional field, but to do cutting-edge science, and
to demonstrate crucial competencies in a wider spectrum of life.
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Summary

How can we promote mathematical understanding? How can our maths
classrooms become centres of vivid mathematical thinking?

We have to create situations that challenge the curiosity of the students.
Teachers should pose problems proportionately to their students’
knowledge and help them to solve these problems with stimulating
questions. More than by reading and listening, mathematics is learned
by really doing maths.

The authors of this book deliver insight into the diversity of practising
inquiry-based mathematics at school, at different school levels, in diffe-
rent countries, and with different methods. They also give vivid examples
of international cooperation as an important success factor for deve-
loping common strategies to foster inquiry based teaching and learning.
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